Math, asked by meghamegha0755, 4 months ago

5) Find the 20 term of the A.P 12,7, 2----​

Answers

Answered by Mister360
15

Step-by-step explanation:

To find:-

\sf t_{20}

Solution:-

a=12

d=12-7=-5

\qquad\sf\longmapsto t_20=a +(20-1)d

\qquad\sf\longmapsto 12+19×(-5)

\qquad\sf\longmapsto 12+(-95)

\qquad\sf\longmapsto12-95

\qquad\sf\longmapsto -83

Answered by Anonymous
100

Answer:

 \large \underline {\sf \pmb {\red{Given}}}

  • ➠ A.P - 12 ,7, 2..

 \large {\underline {\sf \pmb{ \red{To Find}}}}

  • ➠ 20th term

\large \underline{\sf\pmb {\red{Using \: Formula }}}

 \circ{\underline {\boxed{ \sf{T_n=a+(n-1)d}}}}

Where

  • ➠ tn = nth term
  • ➠ n = Number of Term
  • ➠ a = First term
  • ➠ d = Common deference

  \large \underline{\sf \pmb {\red{Solution}}}

\pink\bigstar \: \underline \frak{\pmb{Here  \: we \:  know \:  that:}}

  • ⇒ First Term = 12
  • ⇒ Number of Term = 20

 \pink\bigstar \:  \underline\frak{\pmb{\: Finding  \: Common \:  Differences   \: between  \: terms}}

  : \implies\sf{a_2-a_1}

 :  \implies \sf{7 - 12}

 :  \implies \sf{-5}

  • Hence, The common difference between terms is 6.

 \pink \bigstar \:  \underline\frak{\pmb{Now \:  Finding \:  20th \:  Term}}

 : \implies { \sf{T_n=a+(n-1)d}}

  • ⇒ Substituting the values

 \implies { \sf{T_{20}=12+(20-1) - 5}}

: \implies { \sf{T_{20}=7+(19 \times  - 5)}}

 : \implies { \sf{T_{20}=12 + ( - 95) }}

 : \implies { \sf{T_{20}= - 8 3}}

  • Henceforth, The 20th term is -83.

\large \underline{ \sf \pmb {\red{More \: Useful  \: Formulae}}}

Formula to find the numbers of term of an AP:

  •   : \implies \sf{n= \bigg[ \dfrac{(l - a)}{d}  \bigg]}

Formula to find the tsum of first n terms of an AP:

  •   :  \implies\sf{S_n= \dfrac{n}{2} (a + l)}

Formula to find the sum of squares of first n natural numbers of an AP:

  •  :  \implies \sf{S =  \dfrac{n(n + 1)(2n + 1)}{6} }

Formula to find the nth term of an AP is the square of the number of terms:

  •   : \implies \sf{S =  {n}^{2} }

Formula to find the sum of of an AP:

  •   : \implies \sf{S = n(n+1)}
Similar questions