English, asked by aditya639420, 2 months ago

5. Find the altitude of the triangle if its area is 25 ares and base is 20 m.

Answers

Answered by HarshadaPawar7
0

Answer:

answer is 250 m of the altitude of the triangle

Answered by SachinGupta01
13

 \bf \:  \underline{Given} \:  :

 \sf \: Area  \: of  \: the \:  triangle = 25  \: ares

 \sf \: Base \:  of \:  the  \: triangle = 20  \: m

 \bf \:  \underline{To \:  find} :

 \sf \: We  \: have  \: to \:  find  \: the  \: altitude \:  of  \: the \:  triangle.

 \orange{ \star} \:  \bf \:  \underline{So, \:  Let's \:  Start} \:   \orange{\star}

 \sf \: As \:  we  \: know  \: that :

 \sf  \red{\bull }\:  \longrightarrow \: 1 \: are \:  =  \: 100 \: m^{2}

 \sf \: So,  \: 25  \: ares  \: = 25 × 100 = 2500  \: m^{2}

 \sf \:  \underline{So,  \: Area  \: of \:  the \:  given \:  triangle = 2500  \: m \: ^{2} }

 \small \sf \: By \:  using \:  the \:  Formula  \: of \:  Area \:  of  \: \triangle, \:  we  \: will \:  find  \: the  \: Height.

 \boxed{  \pink{\sf \: Area  \: of \:  Triangle =  \:  \dfrac{ 1}{2}  \:  \times  \: Base \times Height}}

 \sf \:  \underline{Putting \:  the  \: values}

 \longrightarrow \: \sf \: 2500 =  \:  \dfrac{ 1}{2}  \:  \times  \: 20 \times Height

 \longrightarrow \: \sf \: 2500 =  \:  \dfrac{ 1}{1}  \:  \times  \: 10 \times Height

 \longrightarrow \: \sf \: 2500 =    \: 10 \times Height

 \longrightarrow \: \sf \:  Height =  \dfrac{2500}{10}

 \longrightarrow \: \sf \:  Height =  \dfrac{250}{1}

 \underline{ \boxed{  \pink{\sf \: So,  \: Height = 250 \:  meter}}}

Similar questions