Math, asked by maulikshah30, 5 months ago

5. Find the area of a triangle, two sides of why
are 15 cm and 28 cm and the perimeter
84 cm.

Ans:S=A+B+C/3
84/2
42

perimeter=A+B+C
84. =15+28+C
84. =43+C
C=84-43
C=41


Herons Formula=
 \sqrt{s(s - a)(s - b)(s - c)}

 \sqrt{42(42 - 15)(42 - 28)(42 - 41) \} }
 \sqrt{42(27)(1)(14)}
 \sqrt{1134(14)}
 \sqrt{15876}
126cm2

Answers

Answered by Anonymous
33

\Huge{\bf{\mathtt{\pink{AnSweR}}}}

__________________________

\:\:\:\:

\LARGE{\bf{\mathtt{\purple{GivEn}}}}

  • 1st side = 15 cm

  • 2nd side = 28 cm

  • perimeter = 84 cm

\:\:\:

\LARGE{\bf{\mathtt{\purple{ToFinD}}}}

  • Area of the given triangle.

\:\:\\:\:

\LARGE{\bf{\mathtt{\purple{ConSeDeRinG}}}}

  • Let the 3rd side be x

\:\:\:\:

\LARGE{\bf{\mathtt{\purple{SoLuTioN}}}}

  • To find the area , we need to find the unknown side of the triangle , we already know the perimeter of triangle , so by putting values in the equation , we can find the unknown side.

  • perimeter of triangle = Sum of all sides

\:\:\:\:

\Large{\bf{\red{\boxed{15+28+x=84}}}}

\:\:\:\:

\bf{43+x=84}

\bf{x=84-43}

\bf{\boxed{x=41}}

\:\:\:\:

hence , 3rd side is 41 cm

\:\:\:\:

  • Now , as we know all sides of triangle ,we can find the final area of the triangle.

  • area of triangle by Heron's formula = \bf{\LARGE{\sqrt{s(s - a)( s - b )( s - c )}}}

  • here s = \bf{\LARGE{\frac{A+B+C}{3}}}

\:\:\:

⇒s = \bf{\LARGE{\frac{15+28+41}{3}}}

⇒s = \bf{\LARGE{\frac{84}{2}}}

⇒s = \bf{\LARGE{42}}

\:\:\:

\Large{\bf{\red{\sqrt{42(42-15)(42-28)(42-41)}}}}

\Large{\bf{\sqrt{42(27)(1)(14)}}}

\Large{\bf{\sqrt{1134(14)}}}

\Large{\bf{\sqrt{15876}}}

\Large{\bf{\red{area=126cm²}}}

\:\:\:

___________________________

Answered by samaira777
8
I’ll send shortly
Plz wait


Similar questions