Math, asked by samarbahadursingh574, 5 months ago

5. Find the area of hexagon park ABCDEF as per dimensions given herewith ​

Attachments:

Answers

Answered by MoodyCloud
151
  • Area of hexagon ABCDEF is 340 cm².

Step-by-step explanation:

A Park ABCDEF is of hexagon shape.

Park is divided in two parts :

  • First part ABCD is of trapezium shape because pair of Non equal sides are parallel.

  • Second part ADEF is of square shape because it's three sides measure is 16 cm then fourth will be also 16 cm. And two angles are 90° thus it's other two angles will be also 90°.

________________________________

Trapezium ABCD :

Parallel sides of trapezium are BC and AD.

BC is of 8 cm.

ADFE is a square so AD is of 16 cm.

Height of trapezium ABCD is 7 cm.

Now,

 \boxed{\sf \bold{\star \: Area \: of \: trapezium = \dfrac{a + b}{2} \times h}}

Where,

  • a and b are parallel sides of trapezium and h is height of trapezium.

Put a, b and h in formula:

 \sf \longrightarrow \dfrac{8 + 16}{2} \times 7

 \sf \longrightarrow \dfrac{24}{2} \times 7

 \sf \longrightarrow \dfrac{168}{2}

 \longrightarrow \pink{\boxed{\sf \bold{84}}\star}

Area of ABCD is 84 cm²

_____________________________

Square ADEF:

Side is of 16 cm.

So,

 \boxed{\sf \bold{\star \: Area \: of \: square = Side \times Sides}}

 \sf \longrightarrow 16 \times 16

 \longrightarrow \purple{\boxed{\sf \bold{256}}\star}

Area of ADEF is 256 cm².

_______________________________

Area of hexagon ABCDEF = Area of trapezium ABCD + Area of square ADEF.

 \sf \longrightarrow 256 - 84

 \longrightarrow \red{\boxed{\sf \bold{340}}\star}

Therefore,

Area of hexagon ABCDEF is 340 cm².


MяMαgıcıαη: nice :)
Answered by MяMαgıcıαη
238

\rule{200}4

{ \frak { \underline \pink {\qquad Given\: :  \qquad }}} \:

  • A hexagon park maded with joining square and trapezium.

  • Side of square is 16 cm , parallel sides of trapezium are 8 cm and 16 cm and height of trapezium is 7 cm.

{ \frak { \underline \pink {\qquad To\:Find\: :  \qquad }}} \:

  • Area of the park.

{ \frak { \underline \pink {\qquad Solution\: :  \qquad }}} \:

{\red\bigstar\:\underline{\boxed {\bold  \green {Area_{(Square)}\:=\:(Side)^2}}}}

{\red\bigstar\:\underline{\boxed {\bold  \green {Area_{(Trapezium)}\:=\:\dfrac{1}{2}\:\times\:(Sum\:of\:parallel\:sides)\:\times\:height(h)}}}}

{\pink\dag\large\tt\underline{\purple{Area\: of \:park \:= \:Area \:of \:square\: +\: Area \:of \:trapezium}}}\pink\dag

\dag\:\underline{\frak{Putting\:all\:values\:-}}

\longmapsto\:\sf{[(16)^2]\:+\:\bigg(\dfrac{1}{2}\:\times\:(8\:+\:16)\:\times\:7}\bigg)

\longmapsto\:\sf{(16\:\times\:16)\:+\:\bigg(\dfrac{1}{2}\:\times\:24\:\times\:7}\bigg)

\longmapsto\:\sf{(256)\:+\:\bigg(\dfrac{24}{2}\:\times\:7}\bigg)

\longmapsto\:\sf{(256)\:+\:\bigg(\dfrac{24\:\times\:7}{2}}\bigg)

\longmapsto\:\sf{(256)\:+\:\bigg(\dfrac{168}{2}}\bigg)

\longmapsto\:\sf{(256)\:+\:\bigg(\cancel{\dfrac{168}{2}}}\bigg)

\longmapsto\:\sf{(256)\:+\:(84)}

\longmapsto\:\sf{(256\:+\:84)}

\longmapsto\:\boxed{\boxed{\sf{340}}}\:\orange\bigstar

\underline{\boxed {\frak {\therefore \blue {Area_{(Hexagon\:Park)}\:\leadsto\:340\:cm^2}}}}\:\red\bigstar

\rule{200}4


PsychoUnicorn: Amazing. :D
Anonymous: Awesome!
Anonymous: Thanks Ji :D
Similar questions