Math, asked by humairashaikh50, 1 month ago

5. Find the equations of perpendicular
bisectors of sides of the triangle whose
vertices are P(-1,8), 2(4,-2) and R(-5,-3).​

Answers

Answered by ItzNila
5

Step-by-step explanation:

\huge\bf\underline{Given:}

=> Vertices of sides of triangle are (-1,8),Q(4,-2),R(-5,-3).

\huge\bf\underline{To \:  Find:}

=>The equations of perpendicular bisectors of sides of the triangle.

\sf\overbrace{ = >  Understanding \:  the \:  concept:}

=> Let A,B and C be the midpoints of sides PQ,QR and PR respectively of ∆PQR.

=> A is the midpoint of side PQ.

A=&gt; ( \frac{ - 1 + 4}{2</p><p>} </p><p>, \frac{8 - 2}{2} ) \\

A=&gt;  \frac{3}{2} </p><p>,2 \\

\sf{Slope \:  of  \: side  \: PQ = \frac{ - 2 - 8}{4 - ( - 1)} } \\

A=&gt;  \frac{ - 10}{5}  =  &gt;  - 2 \\

So, Slope of perpendicular bisectors of PQ is 1/2 and it passes through 3/2,3.

=> Equation of the perpendicular bisector of side PQ is,

\sf{y - 3 =  \dfrac{1}{2} (x -  \dfrac{3}{2} )}

\sf{}y - 3 =  \dfrac{1}{2} ( \dfrac{2x - 3}{2})

\sf{4(y - 3) = 2x - 3}

\sf{}4y - 12 = 2x  - 3

\sf{2x - 4y + 9 = 0}

B is the midpoint of side QR.

\sf{b =  &gt; ( \dfrac{4 - 5}{2} </p><p>, \dfrac{ - 2 - 3}{2} )}

\sf{b =  &gt;  \dfrac{ - 1}{ \: 2} </p><p>, \dfrac{ - 5}{2} }

Slope of perpendicular side QR,

\sf{ =  &gt;   \dfrac{ - 3 - ( - 2)}{ - 5 - 4} } =  &gt;  \dfrac{ - 1}{ - 9}  =  &gt;  \dfrac{1}{9}

Slope of perpendicular bisector of QR is -9 and it passes through -1/2, -5/2.

=> Equation of perpendicular bisector of side QR is,

\sf{y -  (\frac{ - 5}{2} ) =  - 9(x - ( \frac{ - 1}{2} )})

\sf{ \dfrac{2y + 5}{2} =  - 9( \dfrac{2x + 1}{2}  )}

\sf{2y + 5 =  - 18x - 9}

\sf{18x + 2y  + 14 = 0}

\sf{9x + y + 7 = 0}

C is the midpoint of side PR.

\sf{C =  &gt;  \dfrac{ - 1 - 5}{2} </p><p>, \dfrac{8 - 3}{2} }

\sf{ =  &gt;  - 3</p><p>, \dfrac{5}{2} }

Slope of side PR,

\sf{ =  &gt;  \dfrac{ - 3 - 8}{ - 5 -  ( - 1)} } =  &gt;  \dfrac{ - 11}{ - 4}

\sf{ =  &gt;  \dfrac{11}{4} }

Slope of perpendicular bisector of PR is -4/11 and it passes through (-3,-5/2).

=> Equation of the perpendicular bisectors of side PR is,

\sf{y   -  \dfrac{  5}{2}  =  \dfrac{  - 4}{11} (x + 3)}

\sf{11( \dfrac{2y - 5}{2} =  - 8( x +  3) }

\sf{22y - 5 =  - 8x - 24}

\sf{8x + 22y - 31 = 0}

Therefore, We found all the equations!!.

Attachments:
Similar questions