Math, asked by farhanali31418, 8 hours ago

5. Find the least 5-digit number which is exactly divisible by 20, 25, 30.

☞ answer the question with full and proper method and explanation...​

Answers

Answered by barani79530
2

Step-by-step explanation:

So, LCM of 20, 25 and 30 is 300. But we want the least 5 digit number, which is exactly divisible by 20, 25 and 30. Least 5 digit number = 10000.

Answered by mathdude500
23

\large\underline{\sf{Solution-}}

Since, we have to find the smallest 5 digit number divisible by 20, 25, 30.

So, first we take out the LCM of 20, 25 and 30 using prime factorization method.

\rm :\longmapsto\:Prime \: factors \: of  \: 20 = 2 \times 2 \times 5 =  {2}^{2} \times 5

\rm :\longmapsto\:Prime \: factors \: of  \: 25 = 5\times 5 =  {5}^{2}

\rm :\longmapsto\:Prime \: factors \: of  \: 30 = 2 \times 3\times 5

So,

\rm :\longmapsto\:LCM  \: ( 20, 25, 30 ) =  {2}^{2} \times 3 \times  {5}^{2} = 300

Now,

We know, smallest 5 digit number is 10000.

But we have to find that smallest 5 digit number which is exactly divisible by 20, 25 and 30.

So, using Long Division Method,

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:34 \:\:}}}\\ {\underline{\sf{300}}}& {\sf{\:\:10000 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: \: \: \: \: \: 900 \:  \:  \:   \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \: \: \: \: 1000 \:\:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: 1020 \:  \:\:}} \\ {\underline{\sf{}}}& {\sf{\: \:  \:  \:  \:  - \:20  \:\:}}\end{array}\end{gathered}

So, it means 10000 + 20 = 10020 is the smallest 5 digit natural number divisible by 20, 25, 30

Additional Information :-

Let's take one more example of same type.

Question :- Find the least 5-digit number which is exactly divisible by 20, 25, 30

Solution :-

Since, we have to find the largest 5 digit number divisible by 20, 25, 30.

So, first we take out the LCM of 20, 25 and 30 using prime factorization method.

So,

\rm :\longmapsto\:Prime \: factors \: of  \: 20 = 2 \times 2 \times 5 =  {2}^{2} \times 5

\rm :\longmapsto\:Prime \: factors \: of  \: 25 = 5\times 5 =  {5}^{2}

\rm :\longmapsto\:Prime \: factors \: of  \: 30 = 2 \times 3\times 5

So,

\rm :\longmapsto\:LCM  \: ( 20, 25, 30 ) =  {2}^{2} \times 3 \times  {5}^{2} = 300

Now,

We know, largest 5 digit number is 99999.

But we have to find that largest 5 digit number which is exactly divisible by 20, 25 and 30.

So, using Long Division Method,

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:333 \:\:}}}\\ {\underline{\sf{300}}}& {\sf{\:\:99999 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: \: \: \: 900 \:  \:  \:   \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \: \: \: \: 999 \:\:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: 900 \:  \:\:}}\\ {\underline{\sf{}}}& {\sf{\:\: \: \: \: \: 999 \:\:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: 900 \:  \:\:}} \\ {\underline{\sf{}}}& {\sf{\: \:  \:  \:  99 \:\:}}\end{array}\end{gathered}

So, it means 99999 - 99 = 99900 is the largest 5 digit natural number divisible by 20, 25, 30

Similar questions