Math, asked by panchshila25, 10 months ago

5.
Find the length of the altitude of an equilateral
triangle with side 6 cm. [Mar 17, 18​

Answers

Answered by Anonymous
8

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Length of side = 6 cm

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • length of altitude.

\rule{200}2

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

\setlength{\unitlength}{1.6mm}\begin{picture}(50,20)\linethickness{0.1mm}\put(-3,-3){\line(1,1){20}}\put(-3,-3){\line(1,0){39.5}}\put(36.6,-2.8){\line(-1,1){19.8}}\put(17,-3){\line(0,1){20}}\put(18,5){altitude }\put(3,5){}\put(13,-5){base = 6cm}\end{picture}

 \:\:

In an equilateral triangle ABC, the altitude AD on side BC is also the median.

So, BD = DC

 \underline{\bold{\texttt{Now, in right triangle ADC}}}

 \:\:

 \sf \implies  AC^2 = AD^2 + DC^2

 \:\:

 \sf \implies  AC^2 = AD^2 + \frac { AC^2} { 4 } [Since, AC = BC = 2DC]

 \:\:

 \sf \implies  AD^2 = AC^2 - \frac { AC^2} { 4}

 \:\:

 \sf \implies  AD^2 = \frac { 3(AC^2)} { 4}

 \:\:

 \sf \implies  AD = \frac { (\sqrt3)AC } { 2}

 \:\:

Now, we know the value of AB = AC = BC = 6cm

 \:\:

 \rm So, AD = (\sqrt3) × \frac { 6} { 2} cm

 \:\:

 \sf \implies   (3\sqrt3) cm

Hence altitude is  \purple{3\sqrt3 cm}

\rule{200}4

Similar questions
Math, 5 months ago