Math, asked by paluttkarsh2gmailcom, 1 month ago

5. Find the mode of the following frequency distribution:
Class
0-100
100 - 200 200 - 300 300-400 400-500 500 - 600
Frequency
7
21
37
13
12
10
98 A mair of dice is tossed simultaneously
Find the probability that the​

Answers

Answered by Anonymous
113

Question:-

Find the mode of the following frequency distribution:

\boxed{\begin{array}{c|c} \bf{Class} & \bf{Frequency} \\ \cline{1-2} \sf{\:\:0 - 100} & \sf{7} \\ \sf{100-200} & \sf{21} \\ \sf{200-300} & \sf{37} \\ \sf{300-400} & \sf{13} \\ \sf{400-500} & \sf{12} \\ \sf{500-600} & \sf{10}\end{array}}

Solution:-

We know,

  • \dag{\underline{\boxed{\pink{\red{\bf{Mode = l + \bigg(\dfrac{f_1 - f_0}{2f_1 - f_0 - f_2}\bigg) \times h}}}}}}

Where:-

  • l = lower limit of the modal class
  • h = height of the class
  • f₀ = Frequency of the class preceding the modal class
  • f₁ = Frequency of the modal class
  • f₂ = Frequency of the class succeeding the modal class

Modal class:- The class in a given distribution table which has the greatest frequency is known as modal class.

Here,

The class 200-300 has the greatest frequency in the table. Hence it is the modal class.

From here we get:-

  • l = 200
  • h = 300 - 200 = 100
  • f₀ = 21
  • f₁ = 37
  • f₂ = 13

Putting all the values in the formula:-

 = \sf{Mode = 200 + \dfrac{37-21}{2\times 37 - 21 - 13} \times 100}

 = \sf{Mode = 200 + \dfrac{16}{74 - 34} \times 100}

 = \sf{Mode = 200 + \dfrac{16}{40} \times 100}

 = \sf{Mode = 200 + \dfrac{16}{4} \times 10}

 = \sf{Mode = 200 + 4 \times 10}

 = \sf{Mode = 200 + 40}

 = \sf{Mode = 240}

Mode of the following data is 240

______________________________________


mddilshad11ab: Perfect¶
Anonymous: Thank you! ✨
Answered by Anonymous
39

Answer:

Given :-

\begin{gathered}\begin{tabular}{|c|c|c|c|c|c|c|}\cline{1 - 7} \tt Class & \tt 0-100 & \tt 100-200 & \tt 200-300 & \tt 300-400 & \tt 400-500 & \tt 500-600\\ \cline{1-7}\tt Frequency & \tt 7 & \tt 21 & \tt 37 & \tt 13 & \tt 12 & \tt 10 \\\cline{1-7}\end{tabular}\end{gathered}

To Find :-

  • What is the mode.

Formula Used :-

\clubsuit Mode Formula :

\longmapsto \sf\boxed{\bold{\pink{Mode =\: l + \dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h}}}\\

where,

  • l = Lower limit of modal class
  • f₁ = Frequency of the model class
  • f₀ = Frequency of the class preceding the model class
  • f₂ = Frequency of the class succeeding the model class
  • h = Size of the class interval

Solution :-

\boxed{\begin{array}{cccc}\sf Class\: Interval&\sf Frequency\\\frac{\qquad \qquad \qquad \qquad}{} &\frac{\qquad \qquad \qquad \qquad \qquad}{}\\\sf 0-100&\sf 7\\\\\sf 100-200&\sf 21\\\\\sf 200-300&\sf 37\\\\\sf 300-400&\sf 13\\\\\sf 400-500&\sf 12\\\\\sf 500-600&\sf 10\end{array}}

Given :

  • Lower limit of modal class (l) = 200
  • Frequency of the modal class (f) = 37
  • Frequency of the class preceding the model class (f) = 21
  • Frequency of the class succeeding the model class (f) = 13
  • Size of the class interval (h) = 300 - 200 = 100

According to the question by using the formula we get,

\dashrightarrow \sf Mode =\: 200 + \dfrac{37 - 21}{2(37) - 21 - 13} \times 100\\

\dashrightarrow \sf Mode =\: 200 + \dfrac{16}{2 \times 37 - 34} \times 100\\

\dashrightarrow \sf Mode =\: 200 + \dfrac{16}{74 - 34} \times 100\\

\dashrightarrow \sf Mode =\: 200 + \dfrac{16}{40} \times 100\\

\dashrightarrow \sf Mode =\: 200 + \dfrac{160\cancel{0}}{4\cancel{0}}\\

\dashrightarrow \sf Mode =\: 200 + \dfrac{\cancel{160}}{\cancel{4}}\\

\dashrightarrow \sf Mode =\: 200 + 40\\

\dashrightarrow \sf\bold{\red{Mode =\: 240}}

\therefore The mode is 240.

\rule{150}{2}

IMPORTANT FORMULA :

\clubsuit Mean Formula :

\longmapsto \sf\boxed{\bold{\pink{Mean =\: \dfrac{\Sigma f_ix_i}{\Sigma f_i}}}}\\

where,

  • \sf \Sigma f_ix_i = Sum of all the observations
  • \sf \Sigma f_i = Sum of frequencies or observations

\clubsuit Median Formula :

\longmapsto \sf\boxed{\bold{\pink{Median =\: l + \bigg\lgroup \dfrac{\frac{n}{2} - cf}{f}\bigg \rgroup \times h}}}\\

where,

  • l = Lower limit of median class
  • n = Number of Observations
  • cf = Cumulative frequency of the class preceding the median class
  • f = Frequency of median class
  • h = Size of the class interval (assuming class are of equal size)

mddilshad11ab: Great¶
Similar questions