Math, asked by gvishwanath334, 3 months ago

5. Find the roots of the equation 2x²-5x+3=0 using formula​

Answers

Answered by Anonymous
2

Answer:

2x²-5x+3=0

2x²-2x-3x+3=0

2x(x-1)-3(x-1)=0

(2x-3)(x-1)=0

x=3/2, 1

Step-by-step explanation:

hope it is helpful

Answered by LaeeqAhmed
0

 \color{crimson} { \boxed{\sf roots =  \frac{ - b±  \sqrt{ {b}^{2} - 4ac } }{2a} }}

 \purple{  \sf here : }

  •  \sf a = 2
  •  \sf b =  - 5
  •  \sf c = 3

 \implies \sf roots =   \frac{ - ( - 5)± \sqrt{ {( - 5)}^{2} - 4(2)(3) } }{2(2)}

 \implies \sf roots =   \frac{  5± \sqrt{ 25 -24 } }{4}

 \implies \sf roots =   \frac{  5± \sqrt{ 1} }{4}

 \implies \sf roots =   \frac{  5± 1}{4}

 \purple{ \sf case(1) :}

  \sf root(x) =  \frac{5 + 1}{4}

 \implies \sf root =  \frac{6}{4}

  \boxed{\orange{ \sf \therefore root =  \frac{3}{2} }}

 \purple{ \sf case(2) :}

 \sf root(x) =  \frac{5 - 1}{4}

 \implies  \sf  root = \frac{4}{4}

 \boxed{ \orange{ \therefore \sf root =  1 }}

 \sf therefore ;

 \sf roots \: of \: equation  \: \red{2 {x}^{2} - 5x + 3 = 0 } \: are

 \sf   \color{darkblue}{\frac{3}{2}  \:  \: \color{black}{and } \color{darkblue}\: \: 1}

Similar questions