Math, asked by madnanirachit, 7 months ago

5.Find the roots of the following:
(i) -3x2+ 5x +12 = 0
(ii) 1+4-1−7= 1130,x ≠-4,7

Answers

Answered by ᎷíssGℓαмσƦσυs
0

Step-by-step explanation:

this is your answer ✔️✔️✔️

Attachments:
Answered by Anonymous
1

Step-by-step explanation:

Answer:

The solution of the expression is x=2,1.

Step-by-step explanation:

Given : Expression \frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}

x+4

1

x−7

1

=

30

11

where x\neq -4,7x

=−4,7

To find : Solve the expression by factoring?

Solution :

Expression \frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}

x+4

1

x−7

1

=

30

11

Taking LCM,

\frac{x-7-x-4}{(x+4)(x-7)}=\frac{11}{30}

(x+4)(x−7)

x−7−x−4

=

30

11

\frac{-11}{(x+4)(x-7)}=\frac{11}{30}

(x+4)(x−7)

−11

=

30

11

Cross multiply,

(x+4)(x-7)=-\frac{30\times 11}{11}(x+4)(x−7)=−

11

30×11

(x+4)(x-7)=-30(x+4)(x−7)=−30

Multiply the term,

x^2-7x+4x-28=-30x

2

−7x+4x−28=−30

x^2-3x-28+30=0x

2

−3x−28+30=0

x^2-3x+2=0x

2

−3x+2=0

Apply middle term split,

x^2-2x-x+2=0x

2

−2x−x+2=0

x(x-2)-1(x-2)=0x(x−2)−1(x−2)=0

(x-2)(x-1)=0(x−2)(x−1)=0

(x-2)=0,(x-1)=0(x−2)=0,(x−1)=0

x=2,x=1x=2,x=1

Therefore, The solution of the expression is x=2,1.

Similar questions