5. Find the squares of the following numbers using either (x + y) = x2 + 2xy + y or
(x - y)² = x² - 2xy + y²
(a) 199
(b) 103
(c) 202
(d) 395
(e) 998
Answers
Answered by
52
Answer:-
(a) 199
199 can be written as 200 - 1
So,
⟹ (199)² = (200 - 1)²
- (a - b)² = a² - 2ab + b²
⟹ (200)² - 2(200)(1) + (1)²
⟹ 40000 - 400 + 1
⟹ 39,601
∴ (199)² = 39601
_________________________
(b) 103
103 can be written as (100 + 3)²
⟹ (103)² = (100 + 3)²
- (a + b)² = a² + 2ab + b²
⟹ (100)² + 2(100)(3) + (3)²
⟹ 10000 + 600 + 9
⟹ 10,609
∴ (103)² = 10609.
________________________
(c) 202
202 can be written as (200 + 2)
⟹ (202)² = (200 + 2)²
⟹ (200)² + 2(200)(2) + (2)²
⟹ 40000 + 800 + 4
⟹ 40804
∴ (202)² = 40804
_________________________
(d) 395
395 can be written as (400 - 5)
⟹ (395)² = (400 - 5)²
⟹ (400)² - 2(400)(5) + (5)²
⟹ 160000 - 4000 + 25
⟹ 1,56,025
∴ (395)² = 156025
________________________
(e) 998
998 can be written as (1000 - 2)
⟹ (998)² = (1000 - 2)²
⟹ (1000)² - 2(1000)(2) + (2)²
⟹ 1000000 - 4000 + 4
⟹ 9,96,004
∴ (998)² = 996004.
prince5132:
Brilliant Answer ^_^
Answered by
57
Answer:
A = 39601
B = 10609
C = 40804
D = 156025
E = 996004
Formula applied on these
(a-b)² = a²- 2ab + b²
(a+b)² = a² + 2ab + b²
Similar questions