Math, asked by hprmdhprmd, 6 months ago

5. Find the squares of the following numbers using either (x + y) = x2 + 2xy + y or
(x - y)² = x² - 2xy + y²
(a) 199
(b) 103
(c) 202
(d) 395
(e) 998​

Answers

Answered by VishnuPriya2801
52

Answer:-

(a) 199

199 can be written as 200 - 1

So,

⟹ (199)² = (200 - 1)²

  • (a - b)² = - 2ab +

⟹ (200)² - 2(200)(1) + (1)²

⟹ 40000 - 400 + 1

⟹ 39,601

(199)² = 39601

_________________________

(b) 103

103 can be written as (100 + 3)²

⟹ (103)² = (100 + 3)²

  • (a + b)² = a² + 2ab + b²

⟹ (100)² + 2(100)(3) + (3)²

⟹ 10000 + 600 + 9

⟹ 10,609

(103)² = 10609.

________________________

(c) 202

202 can be written as (200 + 2)

⟹ (202)² = (200 + 2)²

⟹ (200)² + 2(200)(2) + (2)²

⟹ 40000 + 800 + 4

⟹ 40804

(202)² = 40804

_________________________

(d) 395

395 can be written as (400 - 5)

⟹ (395)² = (400 - 5)²

⟹ (400)² - 2(400)(5) + (5)²

⟹ 160000 - 4000 + 25

⟹ 1,56,025

∴ (395)² = 156025

________________________

(e) 998

998 can be written as (1000 - 2)

⟹ (998)² = (1000 - 2)²

⟹ (1000)² - 2(1000)(2) + (2)²

⟹ 1000000 - 4000 + 4

⟹ 9,96,004

∴ (998)² = 996004.


prince5132: Brilliant Answer ^_^
VishnuPriya2801: Thank you ! :)
Answered by Anonymous
57

Answer:

 \huge \tt \: required \: answer

A = 39601

 \sf \implies \:  \: write \: 199 \: as \: 200 - 1

 {199}^{2}  =  {200 - 1}^{2}

 \sf  {200 }^{2}  - 2 (200)(1) + {1}^{2}

 \sf \: 40000 - 400 + 1

 \sf \: 39600 + 1

 \sf \: 39601

B = 10609

 \sf \implies \: write \: 103 \: as \: 100 + 3

 \sf \:  {100}^{2}  + 2(100)(3) +  {3}^{2}

 \sf \: 10000 + 600 + 9

 \sf \: 10609

C = 40804

 \sf \implies \: write \: 202 \: as \: 200 + 2

 \sf \:  {202}^{2}  =  {20+2}^{2}

 \sf \:  {200}^{2}  =  {200}^{2}  + 2(200)(2) +  {2}^{2}

 \sf \: 40000 + 800 + 4

 \sf \: 40804

D = 156025

 \sf \implies \: write \: 395 \: as \: 400 - 5

 \sf \:  {395}^{2}  =  {400  - 5}^{2}

 \sf \: 400 - 2(395)(5) +  {5}^{2}

 \sf \: 160000 - 4000 + 25

 \sf \: 15600 + 25

 \sf \: 15625

E = 996004

 \sf \implies \: \: write \:  998 \: as \: 1000 - 2

 \sf \:  {998}^{2}  =  {1000 - 2}^{2}

 \sf \:  {1000}^{2}  - 2(998)(2) +  {2}^{2}

 \sf \: 1000000 - 4000 + 4

 \sf \: 996000 + 4

 \sf \: 996004

Formula applied on these

(a-b)² = a²- 2ab + b²

(a+b)² = a² + 2ab + b²


prince5132: Awesome !!
Similar questions