Math, asked by aijazsayed678, 5 months ago

5. Find the total surface of a cone which gas a radius if 8 cm
and a height of 12 cm.
(Hint: Surface area of a Cone)​

Answers

Answered by MoodyCloud
14
  • Total surface area of cone is 563.2 cm² approximately.

Step-by-step explanation:

Given:-

  • Radius of cone is 8 cm.
  • Height of cone is 12 cm.

To find:-

  • Total surface area of cone.

Solution:-

We know that,

Total surface area of cone = πrl + πr²

In which,

  • r is Radius of cone.
  • l is slant height of cone

r = 8 cm.

l = √r² + h²

l = √ 8 × 8 + 12 × 12

l = √64 + 144

l = √208

l = 14.4

l = 14.4 cm (approx)

Put r and l in formula :

=22/7 × 8 × 14.4 + 22/7 × 8 × 8

= 2534.4/7 + 1408/7

= 3942.4/7

= 563.2

Therefore,

Total surface area of cone is 563.2 cm² approximately.

________________________________

More formulas:-

  • Surface area of a cuboid = 2 (lb + bh + hl)
  • Surface area of a cube = 6a²
  • Curved surface area of a cylinder = 2πrh
  • Total surface area of a cylinder = 2πr(r+h)
  • Curved surface area of a cone = πrl
  • Total surface area of a right circular = πrl + πr²
  • Surface area of a sphere =4πr²
  • Curved surface area of a hemisphere = 2πr²
  • Total surface area of a hemisphere = 3πr²
  • Volume of a cube = a³
  • Volume of a cylinder = πr²h
  • Volume of a cone = 1/3πr²h
  • Volume of a sphere =4/3πr²
  • Volume of a hemisphere = 2/3πr²
Answered by Anonymous
47

\frak{\pink{Given}}\begin{cases} \red{\textsf{Radius of cone= \textbf{8 cm}} }\\\orange{ \textsf{Height of cone = \textbf{12 cm }}}\end{cases} \\  \\

____________________...

\sf\underline{\red{\:\:\:To \:Find:-\:\:\:}} \\ \\

\bullet\:\textsf{Total Surface Area of cone = \textbf{?}} \\  \\

\sf\underline{\red{\:\:\: Solution:-\:\:\:}} \\ \\

\qquad \qquad\tiny \dag \: {\underline{\frak{Slant\: Height\:of\:cone\::}}} \\  \\

:\implies \sf Slant \: Height = \sqrt{(Radius)^2 + (Height)^2} \\  \\  \\

:\implies \sf Slant \: Height = \sqrt{(8)^2 + (12)^2} \\  \\  \\

:\implies \sf Slant \: Height = \sqrt{64+ 144} \\  \\  \\

:\implies \sf Slant \: Height = \sqrt{208} \:cm\\  \\  \\

:\implies \underline{ \boxed{\sf Slant \: Height = 14.42\: cm}} \\  \\  \\

______________________

\qquad \qquad\tiny \dag \: {\underline{\frak{Total\: Surface\:Area\:of\:cone\::}}} \\  \\

\dashrightarrow\:\:\sf Total \:  Surface  \: Area = \pi rl + \pi r^{2} \\  \\  \\

\dashrightarrow\:\:\sf Total \:  Surface \:  Area = \pi r (l + r) \\  \\  \\

\dashrightarrow\:\:\sf Total \:  Surface \:  Area =  \dfrac{22}{7}  \times 8 (14.42 + 8) \\  \\  \\

\dashrightarrow\:\:\sf Total \:  Surface \:  Area =  \dfrac{22}{7}  \times 8  \times 22.42 \\  \\  \\

\dashrightarrow\:\:\sf Total \:  Surface \:  Area =  \dfrac{22}{7}  \times 179.36 \\  \\  \\

\dashrightarrow\:\:\sf Total \:  Surface \:  Area =  22  \times 25.62 \\  \\  \\

\dashrightarrow\:\: \underline{ \boxed{\sf Total \:  Surface \:  Area =  563.64  \:  {cm}^{2}}} \\  \\  \\

\therefore\:\underline{\textsf{Total Surface Area of cone is \textbf{563.64 cm$^{\text 2}$}}}. \\  \\

_______________________

\large\sf\underline{\red{\:\:\:Extra \: Shots:-\:\:\:}} \\ \\

\boxed{\bigstar{\sf \ Cylinder :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cylinder= \pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ cylinder= 2\pi r h\\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ cylinder= 2\pi r (h+r)

\boxed{\bigstar{\sf \ Cone :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cone= \dfrac{1}{3}\pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Cone = \pi r l \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Cone = \pi r (l+r) \\ \\ \\ \sf {\textcircled{\footnotesize4}} Slant \ Height \ of \ cone (l)= \sqrt{r^2+h^2}

\boxed{\bigstar{\sf \ Hemisphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Hemisphere= \dfrac{2}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Hemisphere = 2 \pi r^2 \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Hemisphere = 3 \pi r^2

\boxed{\bigstar{\sf \ Sphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Sphere= \dfrac{4}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Surface\ Area \ of \ Sphere = 4 \pi r^2

Similar questions