Math, asked by gsrobinka, 11 months ago

5.
Find the unique antiderivative F(x) of f(x)=2x2+1, whese F(0) = -2.


find this​

Answers

Answered by shadowsabers03
20

Correct Question:-

Find the unique anti - derivative F(x) of f(x)=2x^2+1 where F(0)=-2.

Solution:-

Anti - derivative of a function in x is nothing but it's integral with respect to x.

Given that F(x) is the anti - derivative of f(x). So,

\displaystyle\longrightarrow F(x)=\int f(x)\ dx

But here, f(x)=2x^2+1. Then,

\displaystyle\longrightarrow F(x)=\int\left(2x^2+1\right)\ dx

Providing integral to each term,

\displaystyle\longrightarrow F(x)=\int 2x^2\ dx+\int 1\ dx

The constants can be taken out of the integral.

\displaystyle\longrightarrow F(x)=2\int x^2\ dx+1\int dx

\displaystyle\longrightarrow F(x)=2\int x^2\ dx+\int x^0\ dx\quad\quad\dots(1)

We know that,

  • \displaystyle \int x^n\ dx=\dfrac{x^{n+1}}{n+1},\quad n\neq-1

Hence,

\displaystyle\longrightarrow F(x)=2\cdot \dfrac{x^{2+1}}{2+1}+\dfrac{x^{0+1}}{0+1}+c

\displaystyle\longrightarrow F(x)=2\cdot \dfrac{x^{3}}{3}+\dfrac{x^{1}}{1}+c

\displaystyle\longrightarrow F(x)=\dfrac{2}{3}\,x^3+x+c\quad\quad\dots(2)

But given that,

\displaystyle\longrightarrow F(0)=-2

\displaystyle\longrightarrow \dfrac{2}{3}\,(0)^3+0+c=-2

\displaystyle\longrightarrow c=-2

Hence (2) becomes,

\displaystyle\longrightarrow\underline{\underline{F(x)=\dfrac{2}{3}x^3+x-2}}

Similar questions