Math, asked by payalsdiwate, 1 month ago

5.Find the value of Y if the distance between the point A(2, -2) and(-1, y) is 5​

Answers

Answered by SachinGupta01
11

\bf \underline{ \underline{\maltese\:Given} }

 \sf \implies Distance  \: between \:  the \:  point \:  A(2,-2) \:  and  \: B (-1, y) = 5

\bf \underline{\underline{\maltese\: To \: find }}

 \sf  \implies Value  \: of \:  y =  \: ?

\bf \underline{\underline{\maltese\: Solution }}

 \boxed{\sf Distance \:  formula  =\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}

 \bf \underline{Where},

 \sf \implies x_1  = 2

\sf \implies x_2  =  - 1

\sf \implies  y_1  =  - 2

\sf \implies  y_2  =  \: ?

 \sf \underline{Putting \:  the \:  values},

 \sf \implies \sqrt{(-1-2)^2+(y-(-2))^2} = 5

 \sf \implies \sqrt{( - 3)^2+(y + 2)^2} = 5

 \sf \underline{Square  \: both  \: the  \: sides},

 \sf \implies( - 3)^2+(y + 2)^2= 25

 \sf \implies9+(y + 2)^2= 25

 \sf \implies(y + 2)^2= 25 - 9

 \sf \implies(y + 2)^2= 16

 \sf \implies y + 2 =\pm \sqrt{16}

 \sf \implies y + 2 =\pm 4

 \sf \implies y = 2, -6

 \underline{\boxed{ \red{\bf Therefore, the \:  value \:  of \:  y \:  is  -6  \: and \:  2.}}}

Similar questions