English, asked by sadhanaupadhye4, 2 months ago

5) find the zeroes of the polynomial √5 x 2 – 7x - 6 √5 . and verify the relationship between the zeroes and coefficients of the polynomial .​

Answers

Answered by Sauron
30

Step-by-Step explanation:

Given Polynomial = √5x² – 7x – 6√5

Find zeros of polynomial,

\sf\longrightarrow{ \sqrt{5}  {x}^{2}  - 7x - 6 \sqrt{5}}

\sf\longrightarrow{ \sqrt{5}  {x}^{2}  - 10x + 3x - 6 \sqrt{5}}

\sf\longrightarrow{ \sqrt{5}  {x}(x - 2 \sqrt{5})+ 3(x -  2\sqrt{5})}

\sf\longrightarrow{ (\sqrt{5}{x} + 3)(x - 2 \sqrt{5}})

Zeros =

\sf\longrightarrow{ \sqrt{5} x + 3 = 0}

\sf\longrightarrow{ \sqrt{5} x  =  -  3}

\sf\longrightarrow{  x  =   \dfrac{ - 3}{ \sqrt{5} } }

First zero = \sf{\dfrac{-3}{\sqrt{5}}}

\sf\longrightarrow{x - 2 \sqrt{5}} = 0

\sf\longrightarrow{x  = 2  \sqrt{5}}

Second zero = \sf{2\sqrt{5}}

_______________________

Verifying the relationship between zeros and coefficients :

Let α and β be the polynomial's zeros.

In the polynomial =

  • a = \sf{\sqrt{5}}
  • b = \sf{-7}
  • c = \sf{-6\sqrt{5}}

Sum of zeros =

  • α + β

\sf\longrightarrow{ \alpha  +  \beta  =  \dfrac{ - b}{a}}

\sf\longrightarrow{ \alpha  +  \beta  =  \dfrac{ - ( - 7)}{ \sqrt{5} }}

\sf\longrightarrow{ \alpha  +  \beta  =  \dfrac{ 7}{ \sqrt{5} } \:  -  -  - (i)}

____________________________

\sf\longrightarrow{\bigg( \dfrac{ - 3}{ \sqrt{5} }\bigg)+  2\sqrt{5}}

\sf\longrightarrow{\bigg( \dfrac{ - 3}{ \sqrt{5} }\bigg)+   \dfrac{10}{ \sqrt{5}}}

\sf\longrightarrow\dfrac{7}{ \sqrt{5}} \:  -  -  - (ii)

____________________________

Product of zeros :

\sf\longrightarrow{ \alpha  \times  \beta  =  \dfrac{c}{a}}

\sf\longrightarrow{ \alpha    \beta  =  \dfrac{ - 6 \sqrt{5} }{ \sqrt{5} }}

\sf\longrightarrow{ \alpha    \beta  =   - 6} \:  -  -  - (iii)

____________________________

\sf\longrightarrow{2  \sqrt{5} \times  \dfrac{ - 3}{ \sqrt{5}}}

\sf\longrightarrow{ 2 \times ( - 3)}

\sf\longrightarrow{  - 6} \:  -  -  - (iv)

Here, i and ii are equal, and iii and iv are equally.

Hence, the relationship between zeros and coefficients is verified.

Answered by MяMαgıcıαη
224
  • \tiny\boxed{\sf{\blue{Zeroes\:of\:the\:polynomial\:(\alpha\:and\:\beta)\:=\:\dfrac{-3}{\sqrt{5}}\:and\:2\sqrt{5}\:\:}}}

▬▬▬▬▬▬▬▬▬▬▬▬

Explanation :

\underline{\bf\dag{\underline{\green{Given\:Polynomial}}}:}

\qquad\bf\dag\:\bigg\lgroup \sf{ \sqrt{5}x^2 - 7x - 6\sqrt{5} } \bigg\rgroup

\underline{\bf\dag{\underline{\green{To\:Find}}}:}

  • Zeroes of the polynomial.
  • Also, we have to verify the relationship between the zeroes and coefficients of the polynomial.

\underline{\bf\dag{\underline{\green{Solution}}}:}

★ Finding zeroes of the polynomial :-

\qquad\leadsto\quad\tt \sqrt{5}x^2 - 7x - 6\sqrt{5} = 0

\quad\bf\dag\:\bigg\lgroup \sf{Using\:middle\:splitting\:method}\bigg\rgroup

\qquad\leadsto\quad\tt \sqrt{5}x^2 - 10x + 3x - 6\sqrt{5} = 0

\qquad\leadsto\quad\tt \sqrt{5}x(x - 2\sqrt{5}) + 3(x - 2\sqrt{5}) = 0

\qquad\leadsto\quad\tt (\sqrt{5}x + 3)(x - 2\sqrt{5}) = 0

\qquad\leadsto\quad\tt \sqrt{5}x + 3 = 0 \:,\:x - 2\sqrt{5} = 0

\qquad\leadsto\quad\tt \sqrt{5}x = -3 \:,\:x = 2\sqrt{5}

\qquad\leadsto\quad\bf{ x = \red{\dfrac{-3}{\sqrt{5}}} \:,\:x = \red{2\sqrt{5}}}

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

★ Verifying relation b/w the zeroes and coefficients of the polynomial :-

\small\leadsto\quad\tt \alpha + \beta = \dfrac{-b}{a}\:,\:\alpha\beta = \dfrac{c}{a}

Values that we have :-

  • α and β = zeroes of the polynomial = -3/√5 and 2√5
  • a = coefficient of = 5
  • b = coefficient of x = -7
  • c = constant term = -65

★ Putting all known values :-

\small\leadsto\quad\tt \dfrac{-3}{\sqrt{5}} + 2\sqrt{5} = \dfrac{-(-7)}{\sqrt{5}}\:,\:\dfrac{-3}{\sqrt{5}}\:\times\:2\sqrt{5} = \dfrac{-6\sqrt{5}}{\sqrt{5}}

\small\leadsto\quad\tt \dfrac{-3}{\sqrt{5}} + \dfrac{10}{\sqrt{5}} = \dfrac{7}{\sqrt{5}}\:,\:\dfrac{-3}{\cancel{\sqrt{5}}}\:\times\:2\cancel{\sqrt{5}} = \dfrac{-6\cancel{\sqrt{5}}}{\cancel{\sqrt{5}}}

\small\leadsto\quad\tt \dfrac{-3 + 10}{\sqrt{5}} = \dfrac{7}{\sqrt{5}}\:,\:-3\:\times\:2 = -6

\leadsto\quad\bf{\red{ \dfrac{7}{\sqrt{5}}} = \red{\dfrac{7}{\sqrt{5}}}\:,\:\red{-6} = \red{ -6}}

\qquad\qquad\:\:\underline{\bf\dag{\underline{\green{Hence,\:Verified!}}}\bf\dag}

▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions