Math, asked by yadavssaritha, 6 months ago

5 generating questions in polynomials​

Answers

Answered by MissMISHA
5

Answer:

1. Find the value of “p” from the polynomial x2 + 3x + p, if one of the zeroes of the polynomial is 2.

Solution:

As 2 is the zero of the polynomial.

We know that if α is a zero of the polynomial p(x), then p(α) = 0

Substituting x = 2 in x2 + 3x + p,

⇒ 22 + 3(2) + p = 0

⇒ 4 + 6 + p = 0

⇒ 10 + p = 0

⇒ p = -10

2. Does the polynomial a4 + 4a2 + 5 have real zeroes?

Solution:

In the aforementioned polynomial, let a2 = x.

Now, the polynomial becomes,

x2 + 4x + 5

Comparing with ax2 + bx + c,

Here, b2 – 4ac = 42 – 4(1)(5) = 16 – 20 = -4

So, D = b2 – 4ac < 0

As the discriminant (D) is negative, the given polynomial does not have real roots or zeroes.

3. Compute the zeroes of the polynomial 4x2 – 4x – 8. Also, establish a relationship between the zeroes and coefficients.

Solution:

Let the given polynomial be p(x) = 4x2 – 4x – 8

To find the zeroes, take p(x) = 0

Now, factorise the equation 4x2 – 4x – 8 = 0

4x2 – 4x – 8 = 0

4(x2 – x – 2) = 0

x2 – x – 2 = 0

x2 – 2x + x – 2 = 0

x(x – 2) + 1(x – 2) = 0

(x – 2)(x + 1) = 0

x = 2, x = -1

So, the roots of 4x2 – 4x – 8 are -1 and 2.

Relation between the sum of zeroes and coefficients:

-1 + 2 = 1 = -(-4)/4 i.e. (- coefficient of x/ coefficient of x2)

Relation between the product of zeroes and coefficients:

(-1) × 2 = -2 = -8/4 i.e (constant/coefficient of x2)

Similar questions