Math, asked by mouryaamar71, 8 months ago

5. How many different sums can be formed
with the denominations P 50, 100,
P200, P500 and 2,000 taking at
least three denominations at a time?​

Answers

Answered by amitnrw
0

Given : denominations P 50, 100,  P200, P500 and 2,000

To Find : How many different sums can be formed taking at

least three denominations at a time

Solution:

Assuming Each denomination is single

Total denominations  5

taking at  least three denominations at a time

=> 3 Denominations , 4 Denomination , 5 Denominations

3 Denominations  out of 5 in ⁵C₃ = 10  Ways

4 Denominations  out of 5 in ⁵C₄ = 5  Ways

5 Denominations  out of 5 in ⁵C₅ = 1  Way

Total Ways = 10 + 5  + 1   =  16

All possible cases :                   Total

50     100       200                       250

50      100       500                       650

50      100       2000                     2150

50       200     500                        750

50       200     2000                     2250

50        500     2000                    2550

100       200    500                         800

100       200    2000                     2300

100        500   2000                     2600

200        500   2000                    2700

                                                                          Total

50         100       200       500                            850

50         100       200       2000                          2350

50         100       500       2000                          2650

50         200       500       2000                         2750

100        200       500       2000                         2800

50         100       200       500       2000             2850

Learn More:

In how many ways can an amount of Rs. 100 be paid using exactly ...

https://brainly.in/question/12333664

Suppose you have sufficient amount of rupee currency in three ...

https://brainly.in/question/10481481

Similar questions