Math, asked by soujanyarbv, 3 months ago

5. How many sides does a regular polygon have if each interior angle is
(a) 144°
(b) 160°
(c) 156°​

Answers

Answered by SachinGupta01
7

 \bf \:   \underline {Formula  \: to  \: be \:  used }   :

 \boxed{ \red{ \sf \: Each \: interior \: angles \: = \dfrac{(n - 2 \times 180\degree )}{n}}}

Part : (A)

 \sf  \longrightarrow \: \: Interior \:  angle = 144 \degree

 \sf  \longrightarrow \: \: Sides  = \: ?

\sf \: Each \: interior \: angles \: = \dfrac{(n - 2 \times 180\degree )}{n}

 \sf \: Therefore, \dfrac{(n - 2 \times 180)}{n} = 144 \degree

 \sf \implies \:  ( n - 2 ) \times 180 = 144n

 \sf \implies \:  180n - 360 = 144n

 \sf \implies \:  180n - 144n = 360

 \sf \implies \:  36n = 360

 \sf \implies \:  n =  \dfrac{360}{36}

 \sf \implies \:  n =  10

\underline{ \boxed{  \sf\pink{Answer = 10  \: sides}}}

________________________________

Part : (B)

 \sf  \longrightarrow \: \: Interior \:  angle = 160\degree

 \sf  \longrightarrow \: \: Sides  = \: ?

\sf \: Each \: interior \: angles \: = \dfrac{(n - 2 \times 180\degree )}{n}

 \sf \: Therefore, \dfrac{(n - 2 \times 180)}{n} = 160 \degree

 \sf \implies \:  ( n - 2 ) \times 180 = 160n

 \sf \implies \:  180n - 360 = 160n

 \sf \implies \:  180n - 160n = 360

 \sf \implies \:  20n = 360

 \sf \implies \:  n =  \dfrac{360}{20}

 \sf \implies \:  n = 18

\underline{ \boxed{  \sf\pink{Answer = 18  \: sides}}}

________________________________

Part : (C)

 \sf  \longrightarrow \: \: Interior \:  angle = 156\degree

 \sf  \longrightarrow \: \: Sides  = \: ?

\sf \: Each \: interior \: angles \: = \dfrac{(n - 2 \times 180\degree )}{n}

 \sf \: Therefore, \dfrac{(n - 2 \times 180)}{n} = 156 \degree

 \sf \implies \:  ( n - 2 ) \times 180 = 156n

 \sf \implies \:  180n - 360 = 156n

 \sf \implies \:  180n - 156n = 360

 \sf \implies \:  24n = 360

 \sf \implies \:  n =  \dfrac{360}{24}

 \sf \implies \:  n = 15

\underline{ \boxed{  \sf\pink{Answer = 15 \: sides}}}

Similar questions