Math, asked by charvi353, 1 year ago

5-i/2-3i in polar form

Answers

Answered by clockkeeper
16

on \: rationalising \: denominator \\  \frac{(5 - i)}{(2 - 3i)}  \times  \frac{(2 + 3i)}{(2 + 3i)}  \\  =  \frac{(5(2 + 3i) - i(2 + 3i))}{ {(2 )}^{2}  -  {(3i)}^{2} }  \\  =  \frac{(10 + 15i - 2i - 3 {i}^{2}) }{4 - 9( - 1)}  \\  =  \frac{10 + 13i - 3( - 1)}{4 + 9}  \\  =  \frac{13 + 13i}{13}  = 1 + i = z(say)

therefore,

 \tan( \alpha )  =  \frac{1}{1}  = 1 \\  \alpha  =  \frac{\pi}{4}

and, |z| =

 \sqrt{ {(1)}^{2}  +  {(1)}^{2} }  =  \sqrt{2}

therefore,

polar form of z=

 =  |z| ( \cos( \alpha ) + i \sin( \alpha ) )  \\  =  \sqrt{2} ( \cos( \frac{\pi}{4} ) + i  \sin( \frac{\pi}{4} )  )

Similar questions