Math, asked by renu12482, 8 months ago

5. (i) if all the angles of a hexagon are equal, find the measure of each angle.
(ii) if all the angles of a 14- sided figure are equal, find the measure of each angle.​

Answers

Answered by XxItzkillergirlXx
7

 \huge{ \underline{ \underline{ \mathbb{ \blue{ANSWER}}}}}

 \pmb{(i) No. of  \: sides  \: of  \: hexagon, n = 6}

 \pmb{Let \:  each  \: angle \:  be = x°}

 \pmb{Sum  \: of  \: angles = 6x°}

 \pmb{(n – 2)  \times  180° = Sum  \: of  \: angles}

 ⇏\pmb{(6 – 2)  \times  180° = 6x°}

⇏ \pmb{4  \times  180 = 6x}

⇏ \pmb{X = (4 × 180)/6}

 \boxed{ \pmb{x = 120°}}

 \underline{ \pmb{ each  \: angle \:  of  \: hexagon = 120°}}

________________________

 \pmb{(ii) No. of  \: sides \:  of  \: polygon, n = 14}

 \pmb{Let  \: each  \: angle = x°}

 \pmb{ Sum  \: of  \: angles = 14x°}

 \pmb{(n – 2) × 180° = Sum \:  of  \: angles \:  of  \: polygon}

⇏ \pmb{(14 – 2) × 180° = 14x}

⇏ \pmb{12 × 180° = 14x}

⇏ \pmb{x = (12 × 180)/14}

⇏ \pmb{x = 1080/7}

 \boxed{ \pmb{x = (154.2/7)°}}

Answered by Anonymous
3

 \huge{ \underline{ \bold{ᴀɴsᴡᴇʀ....{ \heartsuit}}}}

(i)No.ofsidesofhexagon,n=6

(i)No.ofsidesofhexagon,n=6

\pmb{Let \: each \: angle \: be = x°}

Leteachanglebe=x°

Leteachanglebe=x°

\pmb{Sum \: of \: angles = 6x°}

Sumofangles=6x°

Sumofangles=6x°

\pmb{(n – 2) \times 180° = Sum \: of \: angles}

(n–2)×180°=Sumofangles

(n–2)×180°=Sumofangles

⇏\pmb{(6 – 2) \times 180° = 6x°}⇏

(6–2)×180°=6x°

(6–2)×180°=6x°

⇏ \pmb{4 \times 180 = 6x}⇏

4×180=6x

4×180=6x

⇏ \pmb{X = (4 × 180)/6}⇏

X=(4×180)/6

X=(4×180)/6

\boxed{ \pmb{x = 120°}}

x=120°

x=120°

\underline{ \pmb{ each \: angle \: of \: hexagon = 120°}}

eachangleofhexagon=120°

eachangleofhexagon=120°

Similar questions