Math, asked by bonthukumar9735, 4 months ago

5.If 3 tan A=4, then find sin A and cos​

Answers

Answered by johnjosephm54
0

Step-by-step explanation:

ABC is a right angle triangle

3tanA=4 ⇒tanA=

3

4

=

AB

BC

By using Pythagoras theorem

AC

2

=AB

2

+BC

2

=(3)

2

+(4)

2

=9+16=25

∴AC=

25

=5

sinA=

Hypotenuse

Opposite side of∠A

=

AC

BC

=

5

4

∴cosA=

Hypotenuse

Adjacent side of∠A

=

AC

AB

=

5

3

∴sinA=

5

4

and cosA=

5

4

Attachments:
Answered by saisanthosh76
3

Let ABC is a right angle triangle

3tanA=4 ⇒tanA=\dfrac{4}{3}=\dfrac{BC}{AB} .

by using Pythagoras theorem

AC²=AB²+BC²

=(3)²+(4)²

=9+16=25

∴AC=√25=5

sinA=\dfrac{Opposite side of∠A}{Hypotenuse}

=\dfrac{BC}{AC}= \dfrac{4}{5}

∴cosA=\dfrac{Adjacent side of∠A}{Hypotenuse}

=\dfrac{AB}{AC} =\dfrac{3}{5}

∴sinA= \dfrac{4}{5} and cosA= \dfrac{3}{5}

Similar questions