Math, asked by vidushii20, 1 year ago

5. If a and B are the zeroes of the quadratic polynomial f(x) = x - x - 4, then the value of 1/a + 1/b - ab, is
(a) 15/4
(b) -15/4
(c) 4
(d) 15​

Answers

Answered by BrainlyConqueror0901
11

Answer:

{\bold{\therefore \frac{1}{a}+\frac{1}{b}-ab=\frac{15}{4}}}

Step-by-step explanation:

\huge{\bold{\underline{\underline{SOLUTION-}}}}

• In the given question information given about a quadratic whose zeroes are a and b.

• We have to find the given value.

 \underline \bold{Given : } \\  \implies  a \: and \: b \:  \in ({x}^{2} - x -4 ) \\  \\  \underline \bold{To \: Find : } \\  \implies  \frac{1}{a}  +   \frac{1}{b}  - ab =?

• According to given question :

 \bold{Quadratic \: formula : } \\  \implies  {x}^{2}  -  x - 4 = 0 \\  \\  \implies x =  \frac{ - b +  \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\  \implies x =  \frac{ - ( - 1) +  \sqrt{ (- 1)^{2} - 4 \times 1 \times   ( - 4) } }{2 \times 1}  \\  \\   \bold{\implies x =  \frac{1 +  \sqrt{17} }{2}  -  - (first \: zeroes)} \\  \\    \bold{\implies x =  \frac{1 -  \sqrt{17} }{2} -  - (second \: zeroes)}  \\ \\ \bold{sum \: of \: zeroes}  \\ \implies a + b =  \frac{1 +  \sqrt{17} }{2} +  \frac{1 -  \sqrt{17} }{2}   \\  \\  \implies a + b =  \frac{1  +   \cancel{\sqrt{17}} + 1  -  \cancel{\sqrt{17}}  }{2}   \\  \\  \implies a + b =  \frac{ \cancel2}{ \cancel2}  \\ \\   \bold{\implies a + b = 1}   \\   \\ \bold{product \: of \: zeroes}  \\ \implies a \times b =  \frac{1 +  \sqrt{17} }{2} \times  \frac{1 -  \sqrt{17} }{2}  \\  \\  \implies ab =  \frac{ {1}^{2}  -  (\sqrt{17})^{2}  }{4}  \\ \\ \implies ab =  \frac{1 - 17}{4}   \\  \\  \implies ab =  \frac{  \cancel{- 16}}{ \cancel4}  \\  \\ \bold{ \implies  ab =   - 4 }\\  \\ \bold{finding \: given \: value : } \\  \implies  \frac{1}{a}  +  \frac{1}{b}  - ab \\  \\  \implies  \frac{a + b}{ab} - ab \\   \\  \implies  \frac{1}{ - 4}  - ( - 4) \\   \\ \implies  \frac{ - 1}{4} + 4 \\  \\  \implies  \frac{ - 1 + 16}{4}   \\  \\  \implies  \bold{\frac{15}{4}}

Similar questions