Math, asked by ur5555555, 3 months ago

5) If a + b/b + c = c + d/d + a, p.t c = a or a + b + c + d = 0
Please help​

Answers

Answered by mathdude500
9

\large\underline\blue{\bold{Given \:  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \:  \longrightarrow \: \dfrac{a + b}{b + c}  = \dfrac{c + d}{d + a}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{To \:  prove \:  -  }}

\tt \:  \longrightarrow \: a = c \: or \: a + b + c + d = 0

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \:  \longrightarrow \: \dfrac{a + b}{b + c}  = \dfrac{c + d}{d + a}

\tt \:  \longrightarrow \: (a + b)(d + a) = (b + c)(c + d)

\tt \:  \longrightarrow \: ad +  {a}^{2}  + bd + ba = bc + bd +  {c}^{2}  + cd

\tt \:  \longrightarrow \: ad +  {a}^{2}  + ab - bc -  {c}^{2}  - cd = 0

\tt \:  \longrightarrow \: ( {a}^{2}  -  {c}^{2} ) + b(a - c) + d(a - c) = 0

\tt \:  \longrightarrow \: (a - c)(a + c) + b(a - c) + d(a - c) = 0

\tt \:  \longrightarrow \: (a - c)(a + c + b + d) = 0

\tt\implies \:a - c = 0 \: or \: a + b + c + d = 0

\tt\implies \: \boxed{ \red{ \bf \:a = c \: or \: a + b + c + d = 0 }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Answered by amansharma264
8

EXPLANATION.

⇒ a + b/b + c = c + d/d + a.

As we know that,

Take L.C.M on both sides, we get.

⇒ (a + b)(d + a) = (c + d)(b + c).

⇒ ad + a² + bd + ab = bc + c² + bd + cd.

⇒ ad + a² + bd + ab - bc - c² - bd - cd = 0.

⇒ ad + a² + ab - bc - c² - cd = 0.

⇒ a² - c² + ad - cd + ab - bc = 0.

⇒ (a - c)(a + c) + d(a - c) + b(a - c) = 0.

⇒ (a - c)(a + c + d + b) = 0.

⇒ a - c = 0.

⇒ a = c.

⇒ a + b + c + d = 0.

Similar questions