Math, asked by PiyushJoshi213, 7 months ago

5. If (a+b+c) = 8 and (ab + bc + ca) = 19, find (a^2 + b^2 + c^2).​

Answers

Answered by tennetiraj86
3

Answer:

\huge{\boxed{\rm{\pink{a²+b²+c²=26}}}}

Step-by-step explanation:

Given that:-

a+b+c=8;

ab+bc+ca=19;

We know that

(a+b+c)²=+++2ab+2bc+2ca

=>(a+b+c)²=+++2(ab+bc+ca)

=>8²=+++2(19)

=>64=+++38

=>64-38=++

=>26=++

++=26

Therefore,++=26

Answered by Anonymous
7

Given:-

:\implies \sf (a + b + c) = 8 \: and (ab + bc + ca) = 19

To find?

:\implies \sf (a^{2} + b^{2} + c^{2}) ?

Solution:-

According to given factorisation method we will get the answer.

\large {\boxed {\boxed {\red {\sf { (a+b+c)^{2} = a^{2} + b^{2} + c^{2} + 2(ab + bc + ca) }}}}}

Now by putting the values we will finally with our solution:-

:\mapsto\sf (a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca

:\implies \sf 8^{2} = a^{2} + b^{2} + c^{2} + 2(ab + bc + ca)

:\implies \sf 64 = a^{2} + b^{2} + c^{2} + 2 \times 19

:\implies \sf 64 = a^{2} + b^{2} + c^{2} + 38

:\implies \sf 64 - 38 = a^{2} + b^{2} + c^{2}

:\implies \sf 26 = a^{2} + b^{2} + c^{2}

Hence, solved

\large {\boxed {\boxed {\red {\sf { Answer = 26 }}}}}

Identities to know:-

 \\ \implies \sf (a + b)^{2} = a^{2} + b^{2} + 2ab \\ \\ \implies \sf (a - b)^{2} = a^{2} + b^{2} - 2ab \\ \\ \implies \sf a^{2} - b^{2} = (a + b) (a - b) \\ \\  \implies \sf a^{2} + b^{2} = (a + b)^{2} - 2ab \\ \\  \implies \sf a^{3} + b^{3} = (a + b)^{3} - 3ab (a + b) \\ \\ \implies \sf a^{3} - b^{3} = (a - b)^{3} + 3ab (a - b) \\ \\  \implies \sf (a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab - 2bc - 2ca \\

Similar questions