Math, asked by raopragathi100, 11 months ago

.5: If a = i - j , b = i+j+k and c be a vector such that a x c + b = o and a.c= 4, then Ic|^2
is equal to_

Answers

Answered by Anonymous
1

Products 1 - 8 · This brings us to the calculus of several variables. .... A+B= PR=C+D. Then V =+A+$Bequals W=+C++D. ... The combinations of i and j (or i, j, k) produce all vectors v.

HOPE IT WILL HELP YOU..

PLEASE MARK ME AS BRAINLIEST

Answered by lublana
0

\mid c\mid ^2=\frac{19}{2}

Step-by-step explanation:

Let c=xi+yj+zk be the vector

a=i-j

b=i+j+k

a\times c+b=0

a\cdot c=4

a\times c=\begin{vmatrix}i&j&k\\1&-1&0\\x&y&z\end{vmatrix}

a\times c=-zi-zj+(x+y)k

a\cdot c=(i-j)\cdot (xi+yj+zk)

x-y=4..(1)

By using i\cdot i=j\cdot j=k\cdot k=1, i\cdot j=j\cdot k=k\cdot i=0

Substitute the values then we get

a\times c+b=-zi-zj+(x+y)k+i+j+k=(1-z)i+(1-z)j+(x+y+1)k

a\times c+b=0

(1-z)i+(1-z)j+(x+y++1)=0i+oj+ok

1-z=0

z=1

x+y+1=0

x+y=-1..(2)

Adding equation(1) and equation(2)

2x=3

x=\frac{3}{2}

Substitute the value of x in equation (1)

\frac{3}{2}-y=4

y=\frac{3}{2}-4=\frac{3-8}{2}=-\frac{5}{2}

Therefore, vector c=\frac{3}{2}i-\frac{5}{2}j+k

\mid c\mid^2=x^2+y^2+z^2

Where x=Coefficient of x

y=Coefficient of y

z= Coefficient of z

\mid c\mid ^2=((\frac{3}{2})^2+(-\frac{5}{2})^2+1^2)=\frac{19}{2}

\mid c\mid ^2=\frac{19}{2}

#Learns more:

https://brainly.in/question/9085777:answered by Spra

Similar questions