5. If A is a matrix such that A(adj A) =
20 0
0 20
then |A|=?
Answers
♣ ANSWER:-
A(AdjA)=
⎝
⎜
⎜
⎛
4
0
0
0
4
0
0
0
4
⎠
⎟
⎟
⎞
=∣A∣I
⇒4
⎣
⎢
⎢
⎡
1
0
0
0
1
0
0
0
1
⎦
⎥
⎥
⎤
=∣A∣I
∴∣A∣=4
det (Adj A) =∣A∣
n−1
, where n is number of rows in a matrix
=∣4∣
3−1
=16.
hopefully it helps
HEY MATE HERE IS YOUR EXPLAINATION AND ANSWER
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.Here 'n' is 3, therefore, ∣adjA∣=∣A∣
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.Here 'n' is 3, therefore, ∣adjA∣=∣A∣ 3−1
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.Here 'n' is 3, therefore, ∣adjA∣=∣A∣ 3−1 =∣A∣
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.Here 'n' is 3, therefore, ∣adjA∣=∣A∣ 3−1 =∣A∣ 2
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.Here 'n' is 3, therefore, ∣adjA∣=∣A∣ 3−1 =∣A∣ 2 =10
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.Here 'n' is 3, therefore, ∣adjA∣=∣A∣ 3−1 =∣A∣ 2 =10 2
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.Here 'n' is 3, therefore, ∣adjA∣=∣A∣ 3−1 =∣A∣ 2 =10 2 =100.