Math, asked by Memester, 9 months ago

5. If AB = 8 cm, AC=6 cm, BC=9 cm, AD is the bisector of angle A, then BD:DC= .................​

Answers

Answered by shreeyavankayala
16

Answer:

8:9

Step-by-step explanation:

AB:AC=BD:DC

AB=8cm and AC=9cm

therefore,BD:DC=8:9

Answered by VaibhavSR
0

Answer: \frac{32}{49}

Step-by-step explanation:

  • In a ΔABC, AB=8 cm, AC=6 cm and BC=9 cm.
  • AD bisets ∠A.
  • Let BD=x cm, so DC=(9-x) cm.
  • In ΔADB,

         AD=\sqrt{8^{2}-x^{2}  }

And in ΔADC,

         AD=\sqrt{9^{2} -(81+x^{2} -18x)}

                = \sqrt{18x-x^{2} }

Equating both the values of AD we get,

            18x=64

         ⇒ x=\frac{32}{9}

∴ DC= 9-\frac{32}{9}

       = \frac{49}{9}

Ratio of BD and DC= \frac{\frac{32}{9} }{\frac{49}{9} }

                                = \frac{32}{49}

  • Hence, the required ratio is  \frac{32}{49}.

#SPJ3

Similar questions