Math, asked by dreamingQueen, 3 months ago

5. If p(2) = -3 and p(3) = 17 in the polynomial
p(x) = 3x3 - 7x2 + ax + b, find the values of a
and b.​ please help me guys

Answers

Answered by Arceus02
6

Given:-

  • p(x) = 3 {x}^{3}  - 7 {x}^{2}  + ax + b
  • p(2) =  - 3
  • p(3) = 17

\\

To find:-

  • The value of a and b.

\\

Answer:-

If p(x) is a polynomial, and we want to find p(a), we just have to substitute x = a.

Given that,

p(x) = 3 {x}^{3}  - 7 {x}^{2}  + ax + b

p(2):

p(2) = 3( {2}^{3} ) - 7( {2}^{2} ) + 2a + b

According to the question, p(2) = -3. So,

 \longrightarrow 3( {2}^{3} ) - 7( {2}^{2} ) + 2a + b =  - 3

 \longrightarrow 3( 8 ) - 7( 4 ) + 2a + b =  - 3

 \longrightarrow 24 - 28+ 2a + b =  - 3

 \longrightarrow  - 4+ 2a + b =  - 3

 \longrightarrow 2a + b =  1 \quad \quad \dots(1)

p(3):

p(3) = 3( {3}^{3} ) - 7( {3}^{2} ) + 3a + b

According to the question, p(3) = 17. So,

 \longrightarrow 3( {3}^{3} ) - 7( {3}^{2} ) + 3a + b = 17

 \longrightarrow 3( 27 ) - 7( 9 ) + 3a + b = 17

 \longrightarrow 81- 63 + 3a + b = 17

 \longrightarrow 18 + 3a + b = 17

 \longrightarrow 3a + b =  - 1 \quad \quad \dots(2)

Subtracting (1) from (2),

3a - 2a = -1 - 1

 \longrightarrow a = -2

Putting this value of a in (1),

2(-2) + b = 1

 \longrightarrow b =  5

\\

 \longrightarrow \underline{ \underline{a = -2  \: and \: b =  5}}

Similar questions