Math, asked by kirtanjain1011, 2 months ago

5. If p. q and r are in A.P. and x, y, z are in G.P. then x^q-r × y^r-p × z^p-q is equal to
(a) 0
(b)-1
(c) 1
(d) none of these​

Answers

Answered by abhi569
56

Answer:

1

Step-by-step explanation:

If p, q are r are in AP, 2q = p + r

Therefore, q - r = p - q

If x, y and z are in GP, y² = xz

Now the question looks like:

= x^q-r × y^r-p × z^p-q

= x^p-q × y^r-p × z^p-q

= (xz)^p-q × y^r-p

= (y²)^p-q × y^r-p

= y^2p-2q × y^r-p

= y^(2p - 2q + r - p)

= y^(p + r - 2q)

= y^(0)

= 1

Line 2: x^q-r is changed with x^p-q, as q-r = p-q.

Line 3: since x and z have same power, they can be multiplied.

Line 4: xz = y², condition for GP.

Line 8: p + r = 2q, so p + r - 2q = 0.

Answered by BrainlyRish
56

Given that, The p , q & r are in A.P. [ Airthmetic Progression ] , and x, y & z are in G.P [ Geometric Progression ] .

Exigency To Find : The Value of \bf x^{q - r} \times y^{r-p} \times z^{p -q} ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀Given that ,

⠀⠀⠀⠀⠀⠀▪︎⠀The p , q & r are in A.P. [ Airthmetic Progression ].

Therefore,

\qquad \dashrightarrow \sf 2q \:=\: p + r \\\\

\qquad \dashrightarrow \sf q \:=\: \dfrac{p + r}{2} \\\\

\qquad \dashrightarrow \bf q \:=\: \dfrac{p + r}{2} \qquad \:\:\bigg\lgroup \sf{\:Equation  \: 1 \:}\bigg\rgroup\\\\

⠀⠀⠀⠀⠀⠀⠀⠀AND ,

⠀⠀⠀⠀⠀⠀▪︎⠀The x , y & z are in G.P. [ Geometric Progression ].

Therefore,

  • Condition for an G.P [ Geometric Progression] if x , y & z are in G.P. [ Geometric Progression ].

\qquad \dashrightarrow \sf y^2 \:=\: x z \\\\

\qquad \dashrightarrow \sf y^2 \:=\: x  z  \\\\

\qquad \dashrightarrow \bf y^2 \:=\: x  z \qquad \:\:\bigg\lgroup \sf{\:Equation  \: 2 \:}\bigg\rgroup\\\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀¤ Finding the value of \bf x^{q - r} \times y^{r-p} \times z^{p -q} :

\qquad \dashrightarrow \sf  x^{q - r} \times y^{r-p} \times z^{p -q} \\\\

As We know that ,

\qquad \dashrightarrow \bf q \:=\: \dfrac{p + r}{2} \qquad \:\:\bigg\lgroup \sf{\:Equation  \: 1 \:}\bigg\rgroup\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: value\: of \: q \: as \: Equation \: 1 \::}}\\

\qquad \dashrightarrow \sf  x^{q - r} \times y^{r-p} \times z^{p -q} \\\\

\qquad \dashrightarrow \sf  x^{\Big\{ \dfrac{ p + r}{2} - r\Big\} } \times y^{r-p} \times z^{\Big\{p - \dfrac{ p + r}{2} \Big\}} \\\\

\qquad \dashrightarrow \sf  x^{\Big\{ \dfrac{ p - r}{2} \Big\} } \times y^{r-p} \times z^{\Big\{ \dfrac{ p - r}{2} \Big\}} \\\\

As , We know that ,

\qquad \dashrightarrow \bf y^2 \:=\: x z \qquad \:\:\bigg\lgroup \sf{\:Equation  \: 2 \:}\bigg\rgroup\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: value\: of \: y \: as \: Equation \: 2 \::}}\\

\qquad \dashrightarrow \sf  x^{\Big\{ \dfrac{ p - r}{2} \Big\} } \times y^{r-p} \times z^{\Big\{ \dfrac{ p - r}{2} \Big\}} \\\\

\qquad \dashrightarrow \sf  x^{\Big\{ \dfrac{ p - r}{2} \Big\} } \times (xz)^{\Big\{ \dfrac{ r - p }{2} \Big\}}  \times z^{\Big\{ \dfrac{ p - r}{2} \Big\}} \\\\

\qquad \dashrightarrow \sf  x^{\Big\{ \dfrac{ p - r}{2} \Big\} } \times x^{\Big\{ \dfrac{ r - p }{2} \Big\}} \times z^{\Big\{ \dfrac{ r - p }{2} \Big\}} \times z^{\Big\{ \dfrac{ p - r}{2} \Big\}} \\\\

\qquad \dashrightarrow \sf x^0 + z^0 \\\\

\qquad \dashrightarrow \sf 1 \\\\

\qquad \dashrightarrow \underline {\boxed {\pmb{\frak{\pink{ \: x^{q - r} \times y^{r-p} \times z^{p -q}\:\:=\:1\:}}}}}\:\bigstar \:\\\\

\qquad \therefore \:\underline {\sf Hence,\: The \:  Value \:of \: x^{q - r} \times y^{r-p} \times z^{p -q}\:is \: \pmb{\bf 1 }\:.}\\

Similar questions
Math, 10 months ago