Science, asked by komal04545, 7 months ago

5. If PT is a tangent to a circle with centre o
and PQ is a chord of the circle such that
OPT = 70°, then find the measure of angle POQ.

Answers

Answered by laxmidevi756225
36

Explanation:

is this a right answer,please tell.. if the answer is right then no problem But if the answer is wrong then please tell i will try again ☺

Attachments:
Answered by ItzArchimedes
96

Diagram :-

\setlength{\unitlength}{2mm}\begin{picture}(0,0)\thicklines\put(3,0){\circle{10}}\put(2.9,3.5){\vector(-3,0){1.5cm}}\put(3,0){\circle*{0.3}}\put(2.89,0){\line(0,3){0.7cm}}\put(-3,3.487){\circle*{0.3}}\put(-3.5,4.2){\sf \footnotesize T}\multiput(3,3.5)(1,0){8}{\line(3,0){1mm}}\put(3,2.5){\line(3,0){1.5mm}}\put(3.7,3.5){\line(0,-3){1.62mm}}\put(3.2,-1){\sf\footnotesize O}\put(3,0){\line(-3,-2){5.6mm}}\put(3,3.5){\line(-3,-5){6mm}} \put(3,4){\sf\footnotesize P}\put(-1,-3){\sf\footnotesize Q}\qbezier(2,3.5)(1.5,2)(2.4,2.9)\put(0.4,1.5){\sf\tiny 70^\circ $}\end{picture}

Solution :-

Here ,

  • OP \perp Tangent . So , \angle OPT = 90°
  • \angleQPT = 70°
  • OP = OQ [°.° Radii are always equal ]

\boldsymbol\angleOPT = 90°

\boldsymbol\angle OPT = \boldsymbol\angle QPT + \boldsymbol\angleOPQ

\boldsymbol\angle OPQ = 90° - 70°

\boldsymbol\angle OPQ = 20°

Since the radii are equal . Here we have chord PQ . By observing the given figure ∆OPQ is a an isosceles ∆.

Now , as we know that equal sides opposite angles are always equal in isosceles triangle .

So ,

∠OPQ = ∠POQ

Now , using angle sum property .

⇒ 20° + 20° + ∠POQ = 180°

⇒ 40° + ∠POQ = 180°

⇒ ∠POQ = 180° - 40°

⇒∠POQ = 140°

Hence , POQ = 140°

Similar questions