Math, asked by harmanmehla1993, 11 months ago

5. If sec theta+tan theta=p, then find the value of sin theta interms of p

Answers

Answered by rishu6845
12

Answer:

\bold{sin \alpha  =  \dfrac{ {p}^{2} \:  -  \: 1 }{ {p}^{2}  \:  +  \: 1} }

Step-by-step explanation:

\bold{Given =  >}   \\ sec \alpha  \:  +  \: tan \alpha  \:  =  \: p

\bold{To \: find =  > } \\ value \: of \: sin \alpha

\bold{Concept \: used =  > } \\ 1) \: sec ^{2}  \alpha  \:  - tan ^{2}  \alpha  = 1 \\ 2)tan \alpha  =  \dfrac{sin \alpha }{cos \alpha }  \\ 3)sec \alpha  =  \dfrac{1}{cos \alpha }

\bold{Solution =  >}  \\ sec \alpha  + tan \alpha  = p \: ...........(1)

multiplying \: both \: sides \: by \: (sec \alpha  - tan \alpha ) \\  =  > (sec \alpha  + tan \alpha ) \: (sec \alpha  - tan \alpha ) = p \: (sec \alpha  - tan \alpha )

 =  > ( {sec}^{2}  \alpha  -  {tan}^{2} \alpha ) = p \:(sec \alpha  - tan \alpha )

 =  > 1 \:  =  \: p \: (sec \alpha  \:  -  \: tan \alpha  \: )

 =  > sec \alpha  \:  - tan \alpha  \:  =  \dfrac{1}{p} .......(2)

adding \: equation \: (1) \: and \: (2) \: we \: get

sec \alpha  + tan \alpha  + sec \alpha  - tan \alpha  = p +  \dfrac{1}{p}

 =  > 2 \: sec \alpha  =  \dfrac{1}{p}  + p

 =  > sec \alpha  =  \dfrac{1 +  {p}^{2} }{2p}

now \:subtracting \: equation \: (1) \: and \: (2)

 =  > sec \alpha  + tan \alpha  - (sec \alpha  - tan \alpha ) = p -  \dfrac{1}{p}

 =  > sec \alpha  + tan \alpha  - sec \alpha  + tan \alpha  = p -  \dfrac{1}{p}

 =  > 2tan \alpha  =  \dfrac{ {p}^{2}  - 1}{p}

 =  > tan \alpha  =   \dfrac{ {p}^{2} - 1 }{2p}

now

sin \alpha  =  \dfrac{sin \alpha }{cos \alpha }  \: cos \alpha

sin \alpha  =  \dfrac{ \dfrac{sin \alpha }{cos \alpha } }{ \dfrac{1}{cos \alpha } }

 =  > sin \alpha  =  \dfrac{tan \alpha }{sec \alpha }

 =  > sin \alpha  =  \dfrac{ \dfrac{ {p}^{2} - 1 }{2p} }{ \dfrac{ {p}^{2} + 1 }{2p} }

 =  > sin \alpha  =  \dfrac{ {p}^{2} - 1 }{ {p}^{2} + 1 }

Similar questions