5. If tan A = 0.225, find the value of : (i) sin A, (ii) cos A, (iii) 2 sin? A +3 cos2 A -2
Answers
Answer:
Using Pythagoras theorem,
(hypotenuse)2 = (perpendicular)2 + (base)2
⇒ (perpendicular)2 = (hypotenuse)2 – (base)2
⇒ (perpendicular)2 = (13)2 – (12)2
⇒ (perpendicular)2 = 169 – 144 = 25
⇒ perpendicular = √25 = 5
Using perpendicular = 5, base = 12 and hypotenuse = 13, we can find out sin A and tan A.
Sin A is given by
⇒perpendicular/hypotenuse
= 5/13
And, tan A is given by
⇒perpendicular/base
= 5/12
Thus,
Sin A = 5/13
and
Tan A = 5/12
hope it helps
pls mark as brainlliest
Answer:
Using Pythagoras theorem,
(hypotenuse)2 = (perpendicular)2 + (base)2
⇒ (perpendicular)2 = (hypotenuse)2 – (base)2
⇒ (perpendicular)2 = (13)2 – (12)2
⇒ (perpendicular)2 = 169 – 144 = 25
⇒ perpendicular = √25 = 5
Using perpendicular = 5, base = 12 and hypotenuse = 13, we can find out sin A and tan A.
Sin A is given by
⇒perpendicular/hypotenuse
= 5/13
And, tan A is given by
⇒perpendicular/base
= 5/12
Thus,
Sin A = 5/13
and
Tan A = 5/12