Math, asked by battubaburao1964, 4 months ago

5.
If tan(A + B) = 1, and cos(A - B) =
 \sqrt{3 \div 2}

find A and B.

Answers

Answered by aryan073
8

Given :

Values:

\rm{ tan(A+B)=1 }

\rm{ cos(A-B) =\dfrac{\sqrt{3}}{2}}

To Find :

• The value of A and B =?

Solution :

Given :

\\ \bullet\rm{tan(A+B)=1}

\\ \bullet\rm{cos(A-B)=\dfrac{\sqrt{3}}{2}}

• 0° <A+B < 90° and A > B

We know that,

   \\  \bullet \rm \: tan 45 \degree = 1

  \\ \bullet \rm \: cos \: 30 \degree =  \frac{ \sqrt{3} }{2}

\\ \implies\sf{tan(A+B)=1 }

\\ \implies\sf{A+B=45 \degree}

A + B = 45° ............(1)

\\ \implies\sf{cos(A-B)=\dfrac{\sqrt{3}}{2}}

\\ \implies\sf{A-B=30 \degree}

A - B = 30 ............(2)

Adding Equations (1) and (2) :

\bullet\bf{A+\cancel{B}=45 \degree}

\\ \bullet\bf{A- \cancel{B}=30 \degree}

_______________________________

\\ \implies\sf{2A=75 \degree}

\\ \implies\sf{A=\dfrac{75}{2}}

\\ \implies\sf{A=37.5 \degree}

Putting the value of A in equation (1) we get,

\\ \implies\sf{37.5 \degree+B=45 \degree}

\\ \implies\sf{B=45 - 37.5}

\\ \implies\sf{B=7.5 \degree}

Therefore,

• The value of A is 37.5°

The value of B is 7.5°

Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &amp;\sf{tan(A + B) = 1} \\ &amp;\sf{cos(A - B) = \dfrac{ \sqrt{3} }{2} } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find  -   \begin{cases} &amp;\sf{A \: and \: B}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

★ Given,

:\implies \sf \: tanA \:  =  \: 1

:\implies \sf \: tanA \:  =  \: tan45 \degree

:\implies \sf \: A  +  B = 45 \degree -  -  - (1)

★ Again,

:\implies \sf \: cos(A - B) = \dfrac{ \sqrt{3} }{2}

:\implies \sf \: cos(A - B) = cos30 \degree

:\implies \sf \: A - B = 30 \degree -  -  - (2)

★ On adding equation (1) and (2), we get

:\implies \sf \: A + B + A - B = 45 \degree + 30\degree

:\implies \sf \: 2A = 75 \degree

:\implies \sf \: A \:  =  \: 37.5 \degree

★ Now, substituting the value of A in equation (1), we get

:\implies \sf \: 37.5\degree \:  +  \: B = 45\degree

:\implies \sf \: B \:  =  \: 7.5\degree

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\bf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3}}{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp;1 &amp; \sqrt{3} &amp; \rm \infty \\ \\ \rm cosec A &amp; \rm \infty &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm \infty \\ \\ \rm cot A &amp; \rm \infty &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions