Math, asked by aryadeepsingh148, 9 months ago

5. If tan A + cot A = 2,(A is an acute angle) the value of tanỪA + cot?A=
1
a. 0.
b. 1.
C. 4.
d. 2​

Answers

Answered by Anonymous
1

Answer:

your ans=A=45°

Step-by-step explanation:

 \sf\ \: tanA + cotA = 2 \\  \\  \sf\  \implies: tanA +  \frac{1}{tanA} = 2 \\  \\ \sf\  \implies:  \frac{ {tanA}^{2}  + 1}{tanA}  = 2\\  \\  \sf\  \implies: {tanA}^{2} + 1 = 2 tanA \\  \\ \sf\  \implies:  {tanA}^{2} +  {1}^{2}  - 2 \times \: tanA \times 1   \\  \\\sf\  \implies:   {(tanA - 1)}^{2}  = 0 \\  \\ \sf\  \implies:   (tanA - 1) =  \sqrt{0}  \\  \\ \sf\  \implies:   (tanA - 1) =  0 \\  \\  \sf\ \implies: tanA = 1 \\  \\ \sf\ \implies:tanA =  tan45 \degree \\  \\ \sf\boxed{ \implies:  A  = 45 \degree} \\  \\  \tt\ \: tan 45\degree + cot45 \degree = 1 + 1 = 2

Similar questions