5. If the area of an equilateral triangle is 16√3 cm²?, find its perimeter. .
Answers
Given :
- Area of an equilateral triangle = 16√3 cm²
To find :
- perimeter
Formula used :
- Area of Equilateral Triangle (A) = (√3/4) a²
- perimeter of Equilateral Triangle (A)= 3a
where a = side of Equilateral Triangle
Solution :
Area of Equilateral Triangle (A) = (√3/4) a²
16√3 = (√3/4) a²
or
(√3/4) a² = 16√3
a² = 16√3 × 4/√3
a² = 16√3 × 4/√3
a = √( 16√3 × 4/√3)
a = √3 × 2 × 4
a = 8 √3 cm
perimeter = 3a
perimeter = 3 × 8 √3
perimeter = 24√3
Answer :
perimeter = 24√3 cm
________________________
Perimeter = sum of all sides
Perimeter of rectangle = 2( length + breadth )
Perimeter of square = 4 × a
Circumference = 2πr
Volume of cylinder = πr²h
T.S.A of cylinder = 2πrh + 2πr²
Volume of cone = ⅓ πr²h
C.S.A of cone = πrl
T.S.A of cone = πrl + πr²
Volume of cuboid = l × b × h
C.S.A of cuboid = 2(l + b)h
T.S.A of cuboid = 2(lb + bh + lh)
C.S.A of cube = 4a²
T.S.A of cube = 6a²
Volume of cube = a³
Volume of sphere = 4/3πr³
Surface area of sphere = 4πr²
Volume of hemisphere = ⅔ πr³
C.S.A of hemisphere = 2πr²
T.S.A of hemisphere = 3πr²
_______________________
Given ,
Area of an equilateral ∆ = 16√3 cm²
We know that , the area of equilateral ∆ is given by
Where , a = side of equilateral ∆
Thus ,
16✓3 = ✓3/4 × (a)²
16 = 1/4 × (a)²
(a)² = 64
a = ± 8 cm
Since , the length can't be negative
Therefore , the side of equilateral ∆ is 8 cm
Now , the perimeter of equilateral ∆ is given by
Thus ,
Perimeter = 3 × 8
Perimeter = 24 cm
Therefore , the perimeter of equilateral ∆ is 24 cm
_____________________ Keep Smiling ☺️