Physics, asked by coolk5974, 10 months ago

5. If the height of the solid cone is 40 cm.Where is the position of centre of gravity ?

Answers

Answered by shadowsabers03
6

Consider a solid uniform right circular cone of base radius \sf{R} and height \sf{H.} We have to find position of center of mass of this cone, which is along a straight line connecting base center and upper vertex due to symmetry in the cone.

\setlength{\unitlength}{0.75mm}\begin{picture}(5,5)\thicklines\qbezier(0,0)(25,5)(50,0)\qbezier(0,0)(-8,-2)(0,-4)\qbezier(50,0)(58,-2)(50,-4)\qbezier(0,-4)(25,-9)(50,-4)\put(-4,-1.3){\line(1,2){29}}\put(54,-1.3){\line(-1,2){29}}\put(25,-2){\vector(1,0){29}}\put(25,-2){\vector(0,1){31}\vector(0,1){59}}\put(37,0){\sf{R}}\qbezier(12.5,29)(26,32)(37.5,29)\qbezier(12.5,29)(10,28)(12.5,27)\qbezier(37.5,29)(40,28)(37.5,27)\qbezier(12.5,27)(26,24)(37.5,27)\put(25,28){\vector(1,0){14}}\put(30,30.5){\sf{r}}\put(27,12){\sf{x}}\put(54.5,-5.5){\sf{A}}\put(19,-5.5){\sf{O}}\put(19,21){\sf{O'}}\put(19,56){\sf{B}}\put(42,22){\sf{A'}}\footnotesize\put(27,40){\text{$\sf{H-x}$}}\put(40.5,27.5){\sf{dx}}\put(39,33){\vector(0,-1){4}}\put(39,24){\vector(0,1){4}}\multiput(25.2,-2)(0,30.3){2}{\framebox(2.5,2.5)}\end{picture}

Consider an elemental cylindrical portion of radius \sf{r} and height \sf{dx} at a perpendicular distance \sf{x} from base center, whose center is at \sf{O'.}

We see triangles \sf{OAB} and \sf{O'A'B} are similar. Hence,

\longrightarrow\sf{\dfrac{OA}{OB}=\dfrac{O'A'}{O'B}}

\longrightarrow\sf{\dfrac{R}{H}=\dfrac{r}{H-x}}

\longrightarrow\sf{H-x=\dfrac{Hr}{R}}

\longrightarrow\sf{x=H-\dfrac{H}{R}\,r\quad\quad\dots(1)}

Since \sf{H} and \sf{R} are constants,

\longrightarrow\sf{dx=-\dfrac{H}{R}\,dr\quad\quad\dots(2)}

The volume of the elemental cylindrical portion is,

\longrightarrow\sf{dV=\pi r^2\,dx}

From (2),

\longrightarrow\sf{dV=-\dfrac{\pi r^2H}{R}\,dr}

Let \sf{M} be mass of the cone, \sf{V} be its volume, and \sf{dM} be mass of the elemental portion.

Since the cone is uniform, density is same everywhere. Thus,

\longrightarrow\sf{\dfrac{M}{V}=\dfrac{dM}{dV}}

\longrightarrow\sf{\dfrac{M}{\left(\dfrac{1}{3}\pi R^2H\right)}=\dfrac{dM}{\left(-\dfrac{\pi r^2H}{R}\,dr\right)}}

\longrightarrow\sf{\dfrac{3M}{\pi R^2H}=-\dfrac{R\ dM}{\pi r^2H\,dr}}

\longrightarrow\sf{dM=-\dfrac{3Mr^2\,dr}{R^3}\quad\quad\dots(3)}

Hence the position of center of mass of the cone is given by,

\longrightarrow\sf{\bar x=\dfrac{\displaystyle\sf{\int\limits_R^0x\ dM}}{\displaystyle\sf{\int\limits_R^0dM}}}

The limits are because \sf{dM} is in terms of \sf{dr.}

From (1) and (3),

\longrightarrow\sf{\bar x=\dfrac{\displaystyle\sf{\int\limits_R^0-\left(H-\dfrac{H}{R}\,r\right)\ \dfrac{3Mr^2\,dr}{R^3}}}{\displaystyle\sf{\int\limits_R^0-\dfrac{3Mr^2\,dr}{R^3}}}}

\longrightarrow\sf{\bar x=\dfrac{\displaystyle\sf{-\dfrac{3MH}{R^3}\int\limits_R^0\left(1-\dfrac{r}{R}\right)\ r^2\,dr}}{\displaystyle\sf{-\dfrac{3M}{R^3}\int\limits_R^0r^2\,dr}}}

\longrightarrow\sf{\bar x=\dfrac{\displaystyle\sf{H\int\limits_R^0\left(r^2-\dfrac{r^3}{R}\right)\,dr}}{\displaystyle\sf{\int\limits_R^0r^2\,dr}}}

\longrightarrow\sf{\bar x=\dfrac{\displaystyle\sf{H\int\limits_R^0r^2\,dr-\dfrac{H}{R}\int\limits_R^0r^3\,dr}}{\displaystyle\sf{\int\limits_R^0r^2\,dr}}}

\longrightarrow\sf{\bar x=\dfrac{H\left[\dfrac{r^3}{3}\right]_R^0-\dfrac{H}{R}\left[\dfrac{r^4}{4}\right]_R^0}{\left[\dfrac{r^3}{3}\right]_R^0}}

\longrightarrow\sf{\bar x=\dfrac{\dfrac{H(0^3-R^3)}{3}-\dfrac{H(0^4-R^4)}{4R}}{\left(\dfrac{0^3-R^3}{3}\right)}}

\longrightarrow\sf{\bar x=\dfrac{\dfrac{HR^3}{4}-\dfrac{HR^3}{3}}{-\dfrac{R^3}{3}}}

\longrightarrow\sf{\bar x=\dfrac{HR^3\left(\dfrac{1}{4}-\dfrac{1}{3}\right)}{-\dfrac{R^3}{3}}}

\longrightarrow\sf{\bar x=\dfrac{H\times-\dfrac{1}{12}}{-\dfrac{4}{12}}}

\longrightarrow\sf{\underline{\underline{\bar x=\dfrac{H}{4}}}}

Hence position of center of mass of the cone is at a perpendicular distance of \sf{\dfrac{H}{4}} from the base center.

According to the question,

  • \sf{H=40\ cm}

Hence the position of center of mass of the cone is,

\longrightarrow\sf{\bar x=\dfrac{H}{4}}

\longrightarrow\sf{\bar x=\dfrac{40}{4}}

\longrightarrow\sf{\underline{\underline{\bar x=10\ cm}}}

That is, position of center of mass is \bf{10\ cm} vertically from the base center.


ShivamKashyap08: Awesome. :)
Similar questions