(5) If the points (-2, -1), (1, 0), (x, 3) and (1, y) form a parallelogram, find the values of x and y.
Answers
Answer :-
If the given coordinates are of a parallelogram taken in order then the mid points of both the diagonals will be same (the point where both diagonals meet).
Assume coordinates be A(-2,-1), B(1,0), C(x,3) and D(1,y).
Mid point of AC will be same of mid point of BD.
We have formula for mid-point::
Here::
» x₁ = -2
» x₂ = x
» x₃ = 1
» x₄ = 1
» y₁ = -1
» y₂ = 3
» y₃ = 0
» y₄ = y
Substitute these all values in above formula.
>> Now comparing LHS and RHS
>> Now cross multiplication
This is the required values of x and y.
Answer:
Answer :-
If the given coordinates are of a parallelogram taken in order then the mid points of both the diagonals will be same (the point where both diagonals meet).
Assume coordinates be A(-2,-1), B(1,0), C(x,3) and D(1,y).
Mid point of AC will be same of mid point of BD.
We have formula for mid-point::
\sf\bigg(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\bigg)=\bigg(\dfrac{x_3+x_4}{2},\dfrac{y_3+y_4}{2}\bigg)(
2
x
1
+x
2
,
2
y
1
+y
2
)=(
2
x
3
+x
4
,
2
y
3
+y
4
)
Here::
» x₁ = -2
» x₂ = x
» x₃ = 1
» x₄ = 1
» y₁ = -1
» y₂ = 3
» y₃ = 0
» y₄ = y
Substitute these all values in above formula.
\sf\bigg(\dfrac{-2+x}{2},\dfrac{-1+3}{2}\bigg)=\bigg(\dfrac{1+1}{2},\dfrac{0+y}{2}\bigg)(
2
−2+x
,
2
−1+3
)=(
2
1+1
,
2
0+y
)
\sf\bigg(\dfrac{-2+x}{2},\dfrac{2}{2}\bigg)=\bigg(\dfrac{2}{2},\dfrac{y}{2}\bigg)(
2
−2+x
,
2
2
)=(
2
2
,
2
y
)
\sf\bigg(\dfrac{-2+x}{2},1\bigg)=\bigg(1,\dfrac{y}{2}\bigg)(
2
−2+x
,1)=(1,
2
y
)
>> Now comparing LHS and RHS
\sf\bigg(\dfrac{-2+x}{2}=1\bigg),\bigg(\dfrac{y}{2}=1\bigg)(
2
−2+x
=1),(
2
y
=1)
>> Now cross multiplication
\sf({-2+x}=2),(y=2)(−2+x=2),(y=2)
\sf({x}=2+2),(y=2)(x=2+2),(y=2)
\sf({x}=4),(y=2)(x=4),(y=2)
This is the required values of x and y.