Math, asked by sonukumarct473, 5 months ago

5. If the sum of first m terms of an A – P be n and the sum of its first n terms be m, then show

that the sum of its first (m + n)th term is – (m + n)​

Answers

Answered by Anonymous
4

Answer:

Given ,sum of first m terms of AP is n

hence,m/2[2a+(m-1)d]=n

=[2am+m(m-1)d]=2n.......(1);

Also,sum of first n terms is m

=n/2[2a+(n-1)d]=m

=> [2an+n(n-1)=2m......(2);

=2a(m-n)+[(m²-n²)-(m-n)d]=2(n-m)

=2a(m-n)+[(m+n)(m-n)-(m-n)d]=-2(m-n)

=2a+(m+n-1)d=-2

=m+n/2[2a+(m+n-1)d=-2*m+n/2=(-m+n)

Hence the sum of its first (m+n)terms is -(m+n)

Answered by aryan073
6

Given :

• the sum of first m terms of Ap be n

• The sum of its first n terms be m

________________________________________

To prove :

The sum of its first (m+n)th term = -(m+n)

________________________________________

Formula :

Sum of nth terms =

 \\  \red \bigstar \sf \: sn =  \frac{n}{2} (2a + (n - 1)d)

___________________________________________

Solution :

• Let a be the first term and d is the common difference of the given A.P .Then,

 \\  \implies \sf \: sn =  \frac{n}{2} (2a + (n - 1)d)

Given,

\\ \implies\sf {S_{m}=n}

\\ \implies\sf{\dfrac{m}{2}\bigg( 2a+(n-1)d\bigg)=n}

\\ \implies\sf{2am+m(m-1)=2n \: \: \: ....(1)}

\\ \implies\sf{S_{n} =m}

\\ \implies\sf{\dfrac{n}{2} \bigg(2a+(n-1)d\bigg)=m}

\\ \implies \sf{2an+n(n-1)d=2m \: \: \: ....(2)}

On subtracting equations (2) from (1) we get,

\\ \implies\sf{2a(m-n) +\bigg((m^2-n^2)-(m-n)\bigg)=2(n-m) }

 \\  \implies \sf \: (m - n) \bigg(2a + (m + n - 1)d \bigg) = 2(n - m)

  \\ \implies \sf \: 2a + (m + n - 1) =  - 2

 \\  \implies \sf \: 2a + (m + n - 1) =  - 2 \:  \: .....(3)

Sum of (m+n)th terms of the given AP

\\ \implies\sf{S_{m+n} =\dfrac{m+n}{2} \bigg(2a+(m+n-1)d\bigg)}

\\ \implies\sf{S_{m+n} =\dfrac{m+n}{2} \times (-2)}

\\ \implies\sf{S_{m+n} =-(m+n)}

\\ \implies\boxed{\red\bigstar\sf{S_{m+n} =-(m+n)}}

Hence the sum of (m+n)th term is -(m+n)

Similar questions