Math, asked by siddamsriteja4, 3 months ago

5) If vectors -3i+4j+lambdavec k and mubar(i)+bar(j)+3bar(k) are collinear then find lambda and mu​

Answers

Answered by mathdude500
1

Basic Concept Used :-

Let us consider two vectors,

\rm :\longmapsto\:\vec{a} = a_1\hat{i} + b_1\hat{j} + c_1\hat{k}

\rm :\longmapsto\:\vec{b} = a_2\hat{i} + b_2\hat{j} + c_2\hat{k}

then ,

\rm :\longmapsto\:\vec{a} \: and \: \vec{b} \: are \: collinear \: iff \: \dfrac{a_1}{a_2}  = \dfrac{b_1}{b_2}  = \dfrac{c_1}{c_2}

Let's solve the problem now!!!!

Given that,

\rm :\longmapsto\: - 3\hat{i} + 4\hat{j} +  \lambda\hat{k} \: and \:  \mu \: \hat{i} + \hat{j} + 3\hat{k} \: are \: collinear.

\rm :\implies\:\dfrac{ - 3}{ \mu}  = \dfrac{4}{1}  = \dfrac{ \lambda}{3}

Taking first and second, we get

\rm :\longmapsto\:\dfrac{ - 3}{ \mu}  = \dfrac{4}{1}

\bf\implies \: \mu \:  =  \:  -  \: \dfrac{3}{4}

Taking second and third, we get

\rm :\longmapsto\: \dfrac{4}{1}  = \dfrac{ \lambda}{3}

\bf\implies \: \lambda \:  =  \: 12

Additional Information :-

\boxed{ \sf \: \vec{a}.\vec{b} = \vec{b}.\vec{a}}

\boxed{ \sf \: \vec{a}.\vec{b} =  |\vec{a}|  |\vec{b}| cos \theta}

\boxed{ \sf \: \vec{a}.\vec{b} = 0 \: \rm \implies\:\vec{a} \:  \perp \: \vec{b}}

\boxed{ \sf \: \vec{a} \:  \times  \: \vec{b} = 0 \: \rm \implies\:\vec{a} \:  \parallel\: \vec{b}}

\boxed{ \sf \: \vec{a} \:  \perp \: \vec{b} \: \rm \implies\:\vec{a} \: . \: \vec{b} = 0}

\boxed{ \sf \: \vec{a} \:  \parallel \: \vec{b} \: \rm \implies\:\vec{a} \:  \times  \: \vec{b} = 0}

\boxed{ \sf \: \vec{a} \times \vec{b} =  - \vec{b} \times \vec{a}}

\boxed{ \sf \: \vec{a} \times \vec{a} = 0}

Similar questions