Math, asked by rmp11mk76, 4 months ago

5. If x = 2/3 and x = -3 are the roots of the equation ax? + 7x + b = 0, find the values of a
and b.

Answers

Answered by amansharma264
63

EXPLANATION.

x = 2/3  and  x = -3 are the roots of the equation,

⇒ ax² + 7x + b = 0.

As we know that,

Put the value of x = 2/3 in equation, we get.

⇒ a(2/3)² + 7(2/3) + b = 0.

⇒ a(4/9) + 14/3 + b = 0.

⇒ 4a/9 + 14/3 + b = 0.

Taking L.C.M in equation, we get.

⇒ 4a + 42 + 9b = 0. ⇒ (1).

Put the value of x = -3 in equation, we get.

⇒ a(-3)² + 7(-3) + b = 0.

⇒ a(9) - 21 + b = 0.

⇒ 9a - 21 + b = 0.

⇒ b = 21 - 9a ⇒ (2).

Put the value of equation (2) in equation (1), we get.

⇒ 4a + 42 + 9(21 - 9a) = 0.

⇒ 4a + 42 + 189 - 81a = 0.

⇒ 231 - 77a = 0.

⇒ 77a = 231.

⇒ a = 3.

Put the value of a = 3 in equation (2), we get.

⇒ b = 21 - 9(3).

⇒ b = 21 - 27.

⇒ b = -6.

Values of A = 3 & B = -6.


BrainlyIAS: Awesome :-) ♥ @Amanji
amansharma264: Thanku bhai
Answered by Anonymous
69

 \\ \: \sf \large \color{navy}\underline{ Given :-} \\ \\

⇒  x = 2/3 and x = -3 are the roots of the equation ax² + 7x + b = 0

 \\ \: \sf \large \color{navy}\underline{ \:To \: Find :-} \\ \\

⇒ Values of a and b

 \\ \: \sf \large \color{navy}\underline{ \: Required \: Solution :-} \\ \\

→ Firstly we will put the value of x = 2/3 in the given equation .

\sf \implies a(\dfrac{2}{3})^{2} + 7(\dfrac{2}{3}) + b = 0

\sf \implies a \times \dfrac{4}{9} + \dfrac{14}{3} +b = 0

\sf \implies \dfrac{4a}{9} + \dfrac{14}{3} +b = 0

\sf \implies 4a+42 + 9b = 0 \; -- (i)

→ Now put the value of x = -3 in the given equation

\sf \implies  a(-3)^{2}  + 7(-3) + b = 0

\sf \implies a \times 9 - 21 + b = 0

\sf \implies 9a - 21 + b = 0

\sf \implies b = 21 - 9a \;  --- (ii)

___________

→ Let's put the value of eq ( ii ) in eq ( i )

\sf \implies  4a + 42 + 9(21 - 9a) = 0

\sf \implies 4a + 42 + 189 - 81a = 0

\sf \implies 231 - 77a = 0

\sf \implies  77a = 231

\sf \implies a = \dfrac{231}{77} = 3

___________

→ Let's put the value of a = 3 in eq ( ii )

\sf \implies b = 21 - 9 \times 3

\sf \implies  b = 21 - 27

\sf \implies b = -6

_________

∴ Here ,  a = 3  , b = -6

Similar questions