Math, asked by sonulater636, 1 month ago

5. If x cos A = 8 and 15cosec A = 8 sec A,
then the value of x is​

Answers

Answered by bhavnapanchal869
0

Answer:

Solution:

Given,

x = cos 10° cos 20° cos 40°

x = cos 10° cos(2 × 10°) cos(22 × 10°)

We know that cos A cos 2A cos 22A…cos 2n-1A = (sin 2nA)/(2n sin A)

x = [sin 23(10°)]/ [23 sin 10°]

x = sin 80°/(8 sin 10°)

x = sin(90° – 10°)/ (8 sin 10°)

x = (1/8) [cos 10°/sin 10°)

x = (1/8) cot 10°

I hope it will helpful

please follow

and mark me as brainlist

Answered by sangram0111
10

Given:

\[x\cos A = 8\] and \[15\cos ecA = 8\sec A\]

Solution:

Rearrange equation \[15\cos ecA = 8\sec A\],

\[ \Rightarrow \frac{{\cos ecA}}{{\sec A}} = \frac{8}{{15}}\]

\[ \Rightarrow \cot A = \frac{8}{{15}}\]

\[ \Rightarrow \tan A = \frac{{15}}{8}\]

Know that, \[\tan A = \frac{P}{B}\]

Therefore. \[\frac{P}{B} = \frac{{15}}{8}\]

Apply Pythagoras theorem to get hypotenuse (H),

\[\begin{array}{l}H = \sqrt {{{15}^2} + {8^2}} \\ \Rightarrow H = \sqrt {225 + 64} \\ \Rightarrow H = \sqrt {289} \\ \Rightarrow H = 17\end{array}\]

Now calculate the value of \[\cos x\],

\[\cos A = \frac{B}{H}\]

\[\cos A = \frac{8}{{17}}\]

Put, \[\cos A = \frac{8}{{17}}\] in \[x\cos A = 8\] and evaluate \[x\],

\[x \times \frac{8}{{17}} = 8\]

\[ \Rightarrow x = 17\]

Hence, the value of x is 17.

Similar questions