5. Ifa, b, c, d are continued proportion, let us prove that
(b-c)2+(c–a)2+(b-d)2 = (a-d)2?
Answers
Answered by
97
Answer:
Given :-
- If a, b, c, d are in continued proportion.
Prove That :-
- (b - c)² + (c - a)² + (b - d)² = (a - d)²
Solution :-
As a, b, c, d are in continued proportion,
Let, a/b = b/c = c/d = k [where, k ≠ 0]
where, a/b = k; b/c = k; c/d = k
Now, we have to find the value of a, b, c
➔ c/d = k = c = dk
➔ b/c = k = b = dk . k = dk²
➔ a/b = k = a = dk² . k = dk³
Hence, a = dk³, b = dk² and c = dk
Now,
➤ L.H.S = (b - c)² + (c - a)² + (b - d)²
Put, a = dk³, b = dk² and c = dk we get,
⇒ (dk² - dk)² + (dk - dk³)² + (dk² - d)²
⇒ {dk(k + 1)}² + {dk(1 - k²)}² + {d(k² - 1)}²
⇒ d²k²(k² - 2k + 1) + d²k²(1 - 2k² + k⁴) + d²(k⁴ - 2k² + 1)
⇒ d²{k⁴ - 2k³ + k² + k² - 2k⁴ + k⁶ + k⁴ + 2k² + 1)
⇒ d²(k⁶ - 2k³ + 1)
➠ d²(k³ - 1)²
➤ R.H.S = (a - d)²
Put a = dk³ we get,
↦ (dk³ - d)²
↦ {d(k³ - 1)}²
➦ d²(k³ - 1)²
∴ L.H.S = R.H.S. (PROVED)
Glorious31:
Awesome ..!
Similar questions