Math, asked by shashikantkumar21986, 10 months ago

5. In Fig. 6.17, POQ is a line. Ray OR is perpendicular
to line PQ. OS is another ray lying between rays
OP and OR. Prove that
1
ROS
(Z QOS-Z POS).
2​

Answers

Answered by sethrollins13
237

✯✯ QUESTION ✯✯

POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that angle ROS = 1/2 (angleQOS-anglePOS)..

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

(Refer to the Attachment)

Given : -

\longmapsto\tt{\angle{ROS}=90\degree}

To Prove : -

\longmapsto\tt{\angle{ROS}=\dfrac{1}{2}(\angle{QOS}-\angle{POS})}

Proof : -

As POQ is a line :

\longmapsto\tt{\angle{POS}+\angle{ROS}+\angle{ROQ}=180\degree}

(Angles made on one side of line)

\longmapsto\tt{\angle{POS}+\angle{ROS}+90\degree=180\degree}

\longmapsto\tt{\angle{POS}+\angle{ROS}=180-90}

\longmapsto\tt{\angle{POS}+\angle{ROS}=90\degree} -----(1)

Also ,

\longmapsto\tt{\angle{QOS}=\angle{ROS}+\angle{ROQ}}

\longmapsto\tt{\angle{QOS}=\angle{ROS}+90\degree}

\longmapsto\tt{\angle{QOS}-\angle{ROS}=90\degree} -----(2)

By Equation 1 and 2 : -

\longmapsto\tt{\angle{POS}+\angle{ROS}=\angle{QOS}-\angle{ROS}}

\longmapsto\tt{\angle{ROS}+\angle{ROS}=\angle{QOS}-\angle{POS}}

\longmapsto\tt{\angle{ROS}=\dfrac{1}{2}(\angle{QOS}-\angle{POS})}

HENCE VERIFIED

Attachments:
Answered by pari11776
6

Answer:

Step-by-step explanation:

Attachments:
Similar questions