Math, asked by kowshikkarthik1200, 9 months ago

5. In Fig. 6.20, DE || OQ and DF l| OR. Show that
EFIlQR​

Answers

Answered by BrainlyPrince727
41

Given : DE || OQ  and DF || OR.

To prove EF || QR.  

Since DE || OQ so we have  

PE/EQ=PD/DO.........................1

Also, DF || OR

PF/FR=PD/DO.........................2

From equation 1 and 2, we have

PE/EQ=PF/FR

Thus,  EF || QR.    (converse of basic proportionality theorem)

Hence proved

Thanks

Mark me as brainliest :-)

Answered by rayrafi200022
2

Answer:

HELLO MATE ,

EF//QR [CONVERSE OF BPT]

Step-by-step explanation:

GIVEN;

DE//OQ

DF//OR

PROVE;

EF//QR

SOLUTION;

IN ΔPOQ ,  DE//OQ

       \frac{PE}{EQ} =\frac{PD}{DO} ------[BPT]--1

IN ΔPOR ,  DF//OR

      \frac{PE}{FR} =\frac{PF}{FR} ------[BPT]--2

From equation 1 and 2

      \frac{PE}{EQ} =\frac{PF}{FR}

IN ΔPQR  ,  EF//QR

      \frac{FE}{EQ} =\frac{PF}{FR} ------[proved]

THEREFORE, EF//QR [converse of BPT]

HOPE IT HELPS U PLZ MARK AS BRAINALIEST

Similar questions