Math, asked by subhro20, 10 months ago

5) In the figure (ii) given below, AB and CD are two intersecting chords of a circle.
Name two triangles which are similar. Hence, calculate CP given that AP = 6 cm,
PB = 4 cm, and CD
= 14 cm (PC > PD).​

Attachments:

Answers

Answered by MaheswariS
16

\underline{\textsf{Given:}}

\textsf{AB and CD are two intersecting chords with}

\mathsf{AP=6 cm, PB=4 cm\;and\;CD=14 cm}

\underline{\textsf{To find:}}

\textsf{Length CP}

\underline{\textsf{Solution:}}

\textsf{Since the chords AB and CD are  intersecting at P, we have}

\mathsf{AP{\times}PB=CP{\times}PD}

\mathsf{6{\times}4=CP{\times}(CD-CP)}

\mathsf{24=CP{\times}(14-CP)}

\mathsf{24=14CP-(CP)^2}

\mathsf{(CP)^2-14\,CP+24=0}

\textsf{Factorise, we get}

\mathsf{(CP-2)(CP-12)=0}

\implies\mathsf{CP=2,12}

\textsf{when CP=2, PD=14-2=12}

\textsf{when CP=12, PD=14-12=2}

\mathsf{But\;PC\; >\;PD}

\therefore\mathsf{CP=12\;cm}

\underline{\textsf{Answer:}}

\textsf{Length of CP is 12 cm}

Similar questions