Math, asked by jeremiahbiju00, 8 months ago

5. In the figure, OA = OB and OD=OC. Show that ∆AOD = ∆BOC.

Attachments:

Answers

Answered by Anonymous
11

\large\sf{(i)OA=OB(given)}

\large\sf{OD=OC(given)}

\large\sf{\angle{AOD}and\angle{BOC}(V.O.A)}

\large\sf{\angle{AOD}=\angle{BOC}}

\large\sf{∆AOD\:\cong\:∆BOC}

\large\sf{By\:SAS\:congruence\:rule}

\large\sf{(ii)\angle{OAD}=\angle{OBC}(pair\:of\:alternate\:angles\:of\:AD\:and\:BC)}

\therefore\large\sf{AD||BC}

Similar questions