Math, asked by haripandit489, 9 months ago



5. In the given figure, DE || BC, AD= 3 cm and
AB= 8 cm. Then find AE: EC.
on
le​

Answers

Answered by Anonymous
2

\Large{\underline{\underline{\bf{Solution :}}}}

\rule{200}{1}

Given :

DE || BC

AD = 3 cm

BD = 8cm

\rule{200}{1}

To Find :

We have to find the value of AE : EC

\rule{200}{1}

Solution :

As, it is given that

DE || BC

So, A.T.Q

\sf{→\frac{AD}{BD} = \frac{AE}{EC} \: \: \: \: \: \: \: \: \: (\because \: BPT)} \\ \\ \sf{→\frac{AE}{EC} = \frac{3}{8}} \\ \\ \sf{AE : EC = 3 : 8}

So, AE : EC = 3 : 8

Attachments:
Answered by MissTanya
29

Given That :-

  • AD = 3 cm
  • AB = 8 cm
  • DE || BC

(For proper explaination refer to the attachment)

\huge{\boxed{\mathfrak{\underline{\purple{</u></strong><strong><u>S</u></strong><strong><u>o</u></strong><strong><u>l</u></strong><strong><u>u</u></strong><strong><u>t</u></strong><strong><u>i</u></strong><strong><u>o</u></strong><strong><u>n</u></strong><strong><u>!}}}}}

Now, according to BASIC PROPORTIONAL THEOREM.

➡️ \frac{AD}{BD}  =  \frac{AE}{EC}

➡️  \frac{AE}{EC}  =  \frac{3}{8}

➡️ AE : EC = 3 : 8 ans.

﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏

ђ๏קє เt ђєlקร ...♥

Attachments:
Similar questions