Math, asked by 5097056chkesavasai84, 7 months ago


5)Ir SecA +Tand -p then find the value of 'SinA in terms of p.​

Answers

Answered by VishnuPriya2801
45

Correct Question:-

If sec A + tan A = p then find the value of Sin A in terms of p.

Answer:-

Given:

sec A + tan A = p -- equation (1).

We know that,

sec² A - tan² A = 1

using - = (a + b)(a - b) we get,

→ (sec A + tan A) * (sec A - tan A) = 1

Putting the values from equation (1) we get,

→ p * (sec A - tan A) = 1

sec A - tan A = 1/p -- equation (2)

Now,

Add equations (1) & (2).

→ sec A + tan A + sec A - tan A = p + \sf \dfrac{1}{p}

→ 2sec A =  \sf\dfrac{ p² + 1} { p}

\sf \sec A =\dfrac {p² + 1}{2p }

Substitute the value of sec A in equation (1).

 \sf \dfrac{ p² + 1}{2p} + tan A = p

→ tan A =  \sf \dfrac{p - (p² + 1)}{2p}

→ tan A = \sf\dfrac{ 2p² - p² - 1}{2p}

 \sf \large\tan A = \dfrac{p² - 1}{2p}

Now,

Divide tan A by sec A.

 \sf \implies \:  \dfrac{ \tan \: A }{ \sec \: A}  =  \dfrac{ \dfrac{ {p}^{2}   -  1}{2p} }{ \dfrac{p ^{2}   +  1}{2p} }

Using sec A = 1/cos A and tan A = sin A/cos A we get,

 \implies \sf \:  \dfrac{ \dfrac{ \sin \: A }{ \cos \: A } }{ \dfrac{1}{\cos \: A  } }  =  \dfrac{p ^{2}  - 1}{2p}  \times  \dfrac{2p}{ {p}^{2} + 1 }  \\  \\  \implies \sf \: \dfrac{ \sin \: A }{ \cos \: A } \times \cos \: A =  \dfrac{ {p}^{2} - 1 }{p ^{2} + 1 }  \\  \\  \sf \implies \large  \sin \: A =  \frac{p ^{2}  - 1}{ {p}^{2} + 1 }

Answered by ankujagtap036
2

Given:

sec A + tan A = p -- equation (1).

We know that,

sec² A - tan² A = 1

using a² - b² = (a + b)(a - b) we get,

→ (sec A + tan A) * (sec A - tan A) = 1

Pp² - 1}

Similar questions