-5 is one of the zeroes of 2x²+px-15, zeroes of p(x²+x)+k are equal to each other. find the value of k.
Answers
Answered by
2
Answer:
7 / 4
Step-by-step explanation:
Here, - 5 is a root of the polynomial 2x^2 + px - 15, it means 2x^2 + px - 15 = 0 for x = - 5.
When x = - 5
⇒ 2( - 5 )^2 + ( - 5 )p - 15 = 0
⇒ 2( 25 ) - 5p - 15 = 0
⇒ 50 - 5p - 15 = 0
⇒ 35 = 5p
⇒ 7 = p
Given, roots of p( x^2 + x ) + k[ px^2 + px + k ] are equal, therefore, discriminant of p( x^2 + x ) + k is 0.
⇒ discriminant = 0
⇒ p^2 - 4pk = 0
⇒ 7^2 - 4*7*k = 0
⇒ 49 - 28k = 0
⇒ 28k = 49
⇒ k = 49 / 28 = 7 / 4
Similar questions
English,
5 months ago
Business Studies,
10 months ago