5. Let ABC be a triangle such that cotA+cotB+ cotC= _3 then prove that ABC is an
equilateral triangle.
Answers
Answer:
if i'm not wrong,
Ques should be given like:
if cotA+cotB+cotC = √3, then P.T ....
Step by step Explanation:
We have, cotA+cotB+cotC=√3
Squaring,
cot²A+cot²B+cot²C+2cotA.cotC
+2cotB.cotC+2cotC.cotA = 3 .....(1)
Now in △ABC. A+B+C=π ⇒ A+B=π−C
⇒cot(A+B)=cot(π−C)
⇒(cotA.cotB−1)/(cotA+cotB) = −cotC
⇒cotAcotB+cotBcotC+cotCcotA=1 ...(2)
From (1) and (2) , we have,
cot²A+cot²B+cot²C+2cotAcotB+2cotBcotC+2cotCcotA
=3[cotAcotB+cotBcotC+cotCcotA]
⇒cot²A+cot²B+cot²C−cotAcotB−cotBcotC−cotCcotA = 0
⇒1/2[(cotA−cotB)²+(cotB−cotC)²+(cotC−cotA)²]=0
[∵x²+y²+z²−zx−xy−zy=1/2{(x−y)²+(y−z)²+(z−x)²}]
⇒(cotA−cotB)²+(cotB−cotC)²+(cotC−cotA)²=0 ...(3)
⇒cotA = cotB = cotC
- [In eq (3),Since R.H.S. is zero, each square must be zero]
⇒A = B = C [for triangle]
⇒ Triangle is equilateral.
- [Note: a small req,pls give a ♡ ,if you find the answer helpful,it takes too much time to write these anwers..thank you _/\_ ]